cho S=4+4^2+4^3+......+4^2016. Chứng minh S chia hết cho 420
cho S=2+4^2+4^3+....+4^2016.Chứng minh S chia hết cho 420
Cho S = 4 + 4^2+4^3+......+4^2016 . Chứng minh rằng S chia hết cho 420 .
S=4+4^2+4^3+4^4+...+4^2016
S=(4+4^2 +...+4^6)+....+(4^2011+4^2012+...+4^2016)
S=5460+...+4^2010*(4+4^2+...+4^6)
S=5460+..+5460*4^2010
S=5460*(1+..+4^2010)
Vì 5460 chia hết cho 420 nên S chia hết cho 420
cho S=4+4 mũ 2+4 mũ 3 +.....+4 mũ 2016 .chứng minh rằng Schia hết cho 420
cho S=5+5^2+5^3+5^4+...+5^2016
chứng minh S chia hết cho 126
5^3=125
5^3+1=126
=> ghép (5n-4+5^n)=5n-4(1+5^3)=5n-4.126
số còn lại 5^2+5^3=25+125=150 chia 126=3 dư 24
mình chỉ chứng minh được chia hết cho 156 thôi !
cho S=3^1+3^2+3^3+3^4+...3^2015+3^2016 chứng minh dãy số chia hết cho 26
Cho S=5+52+53+54+...+52016. Chứng minh S chia hết cho 31
S=5+52+53+54+...+52016
=(5+52+53)+(54+55+56)+...+(52014+52015+52016)
=5(1+5+52)+54(1+5+52)+...+52014(1+5+52)
=5.31+54.31+...+52014.31
=31(5+54+...+52014)
Vì 31\(⋮\)31 nên 31(5+54+...+52014)
Vậy S \(⋮\) 31
S = 5 + 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + .... + 5 ^ 2016 ( co 2016 số hạng )
S = ( 5 + 5 ^ 2 + 5 ^ 3 ) + ( 5 ^ 4 + 5 ^ 5 + 5 ^ 6) + ..... + ( 5 ^ 2014 + 5 ^ 2015 + 5 ^ 2016 ) Co 2016 : 3 = 672 nhom
S = 5 x ( 1 + 5 + 5 ^ 2 ) + 5 ^ 4 x ( 1 + 5 + 5 ^ 2 ) +...... + 5 ^ 2014 x ( 1 + 5 + 5 ^ 2 )
S = 5 x 31 + 45 ^ 4 x 31 + ... + 5 ^ 2014 x 31
S = ( 5 + 5 ^ 4 + .... + 5 ^ 2014 ) x 31
VÌ 31 chia hết cho 31 nên ( 5 + 5 ^ 4 +.... + 5 ^ 2014 ) x 31 chia hết cho 31, hay B chia hết cho 31
Cho S=1+4^2+4^3+...+4^2004 .Chứng minh S chia hết cho 10 và 3S+4 chia hết cho 4^2004
CHỨNG MINH S CHIA HẾT CHO 10 :
\(S=4+4^2+...+4^{2004}\)
\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2003}+4^{2004}\right)\)
\(S=1\left(4+4^2\right)+4^3\left(4+4^2\right)+...+4^{2003}\left(4+4^2\right)\)
\(S=1.20+4^3.20+...+4^{2003}.20\)
\(S=20.\left(1+4^3+...+4^{2003}\right)\)CHIA HẾT CHO 10 (VÌ 20 CHIA HẾT CHO 10 )
\(=>dpcm\)
CHỨNG MINH 3S+4 CHIA HẾT CHO 42004
\(S=4+4^2+4^3+...+4^{2004}\)
\(4S=4+4^2+4^3+...+4^{2005}\)
\(3S=4S-S=4^{2005}-4\)
MÀ 42005 CHIA HẾT CHO 42004
\(=>3S+4\)CHIA HẾT CHO \(4^{2004}\left(dpcm\right)\)
\(S=1+4^2+...+4^{2004}\)
\(4S=4+4^3+...+4^{2005}\)
\(\Rightarrow\)\(4S-S=4+4^3+...+4^{2005}-1-4^2-...-4^{2004}\)
\(\Rightarrow\)\(3S=\left(4^3-4^3\right)+...+\left(4^{2004}-4^{2004}\right)-\left(4^{2005}+4-1-4^2\right)\)
\(\Rightarrow\)
Cho `A = 4 + 4^2 + 4^3 +...+ 4^23 + 4^24`
Chứng minh A chia hết 20; A chia hết 21; A chia hết 420
Lời giải:
$A=(4+4^2)+(4^3+4^4)+....+(4^{23}+4^{24})$
$=(4+4^2)+4^2(4+4^2)+....+4^{22}(4+4^2)$
$=(4+4^2)(1+4^2+...+4^{22})$
$=20(1+4^2+...+4^{22})\vdots 20$
----------------------------
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+...+4^{22})$
$=21(4+4^4+....+4^{22})\vdots 21$
----------------------
Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$
Cho S = 1+3+3^2+3^3+3^4+...+3^99
a) Chứng minh rằng S chia hết cho 4
b) Chứng minh rằng S chia hết cho 40