tìm GTLN
12x-4x^2-1
Tìm GTNN
B= (4x^2 - 6x +1)/(4x^2-4x+1)
Đề bài ko chính xác
Biểu thức này chỉ có GTLN, không có GTNN
tìm x : (4x+1)(16x^2-4x+1)-16x(4x^2-5)=17
64x^3 + 1 - 64x^3 + 80x =17
80x =16
x =3/10
64x^3 + 1 -64x^3 + 80x = 17
80x = 16
x = 3/10
64x^3 + 1 - 64x^3 + 80x = 17
80x = 16
x = 3/10
tìm gtnn
\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}=\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=2\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi \(\left(2x-1\right)\left(3-2x\right)\ge0\)
\(\Leftrightarrow\dfrac{1}{2}\le x\le\dfrac{3}{2}\)
(2x+1)^2-4x^2+4x-1=0
tìm xAnh đang trên xe đi chơi nên xin phép gõ không latex
--
(2x+1)^2 - 4x^2 + 4x -1 =0
<=> (2x+1)^2 - (2x-1)^2=0
<=> (2x + 1 + 2x -1). (2x+1 - 2x +1)=0
<=> 4x. 2= 0
<=> 8x=0
<=> x =0
`@` `\text {Ans}`
`\downarrow`
`(2x + 1)^2 - 4x^2 + 4x - 1 = 0`
`<=> 4x^2 + 4x + 1 - 4x^2 + 4x - 1 = 0`
`<=> (4x^2 - 4x^2) + (4x + 4x) + (1 - 1) = 0`
`<=> 8x = 0`
`<=> x = 0`
Vậy, `x = 0.`
rút gọn (a^2-1)(a^2-a+1)(a^2+a+1)
tìm x : (4x+1)(16^2-4x+1)-16x(4x^2-5)=17
Tìm x biết:
(4x - 3)( 4x + 2) + (4x + 5)(1 - 4x) =2.52
(4x-3).(4x+2) + (4x+5).(1-4x) = 2.52
16x2 + 8x - 12x - 6 + 4x - 16x2 + 5 - 20x = 50
(16x2 - 16x2) + ( 8x-12x+4x-20x) - (6-5) = 50
-20x = 50
x = -5/2
Cho biểu thức A=\(\left(\frac{2x+1}{1-2x}-\frac{1-2x}{1+2x}-\frac{16x^2}{4x^2-1}\right):\frac{16x^3-4x}{4x^2-4x+1}\)
a) Tìm ĐKXĐ
b) Rút gọn
c) Tìm x để A có giá trị dương
Tìm x: 4x^2 - 4x + 1 = 0
\(=>4xx-4x+1=0\)
\(4x\left(x-1\right)+1=0\)
\(=>\left[{}\begin{matrix}4x=0\\\left(x-1\right)+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x-1=-1\end{matrix}\right.\left[{}\begin{matrix}x=0\\x=0\end{matrix}\right.\)
vậy x=0
\(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
1/GTNN 4x^2+4x-1
2/căn(3x^2-4x +3)=1-2x . biết x=trừ căn a . TÌM a?
help. !!!
Bài 1:
\(A=4x^2+4x-1\)
\(=4x^2+4x+1-2\)
\(=\left(2x+1\right)^2-2\ge-2\)
Dấu "=" xảy ra khi \(x=-\frac{1}{2}\)
Bài 2:
Bình phương 2 vế
\(\sqrt{\left(3x^2-4x+3\right)^2}=\left(1-2x\right)^2\)
\(\Leftrightarrow3x^2-4x+3=4x^2-4x+1\)
\(\Leftrightarrow2-x^2\Leftrightarrow x^2=2\Leftrightarrow x=-\sqrt{2}\) (tm)
\(x=-\sqrt{a}\Rightarrow-\sqrt{2}=-\sqrt{a}\Rightarrow a=2\)
4x^2+4x-1
=4x^2+4x+1-2
=(2x+1)^2-2
=> (2x+1)^2\(\ge\)0 voi moi x
=> (2x+1)^2 \(\ge\)2
=> GTNN la 2
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)