A = 1+2+3+4+5+....+2015
tính a: [1-1/2*2]*[1-1/3*3]*[1-1/4*4]*[1-1/5*5]*......*[1-1/2015*2015]*[1-1/2016*2016]
tính nhanh
A=1+3-5+7-..........-2013+2015
B=1-2+3-4+...................2015-2016
C=1-2-3+4+5-6-6+8+...........+2013-2014-2015+2016
D=1-4+7-10+.....-2014+2017
E=1+2-3-3+5+6 -.......+2013+2014-2015-2016
F=1-2+3-4+..........+2015+2016
G=1+3-5-7+9+11.............-2013-2015
H=1-2-34+5-6-7+8+.................+1013-1014-1015+1016
chị kết bạn với em nha gửi lời kết bn với em nhé
Câu 1
a) Chứng tỏ rằng 1/3 - 1/3^2 + 1/3^3 - 1/3^4 + 1/3^5 - 1/3^6 < 1/4
b) Cho A= 2015^2016 + 2016^2015 x 2015 và B= 1 + 2^2 + 3^2 + ......+2016^2. Tính AB có chia hết cho 5 không? Vì sao?
a. [(-2)^5*2014-4^2*2015]-(-2015^0 + 3^2 - 2^3)
b. [9-(1/2+1/3+1/4+...+1/10)] : (1/2+2/3+3/4+...+9/10)
a. \(\left[\left(-2\right)^5.2014-4^2.2015\right]-\left(-2015^0+3^2-2^3\right)\)
\(=-64448-32240+1-9+8=-96688\)
Tớ lm lại nhé:
SBC = 9-1/2-1/3-1/4-...-1/10
=1+1+...+1(9 số 1) -1/2-1/3-1/4-1/5-...-1/10.
=(1-1/2)+(1-1/3)+...+(1-1/10)
=1/2+2/3+...+9/10= SC
=> phép chia có thương là 1(vì SBC=SC)
SBC = (1-1/2) + (1-1/3) + ... + (1-1/10)
=1/2 + 2/3 +3/4 +... +9/10 = SC
Vậy thương là 1.
Tính các tổng sau:
a) A=1+(-2) + 3 +(-4) + ...+(- 2014) + 2015;
b) B= (-2) + 4 +(-6) + 8 ... +(-2014) + 2016;
c) 1+(-3) + 5 +(-7) + ... + 2013 +(-2015);
d) (-2015) + (-2014) + (-2013)+ ... + 2015 + 2016
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
\(B=\left(-2\right)+4+\left(-6\right)+8+\left(-10\right)+,...+\left(-2014\right)+2016\)
\(B=2+2+....+2\left(\text{504 số hạng 2}\right)=1008\)
c) 1 + ( -3 ) +5 + ( -7 ) + ...........+ 2013 + ( -2015 )
[ 1 + (-3 ) ] + [ 5 + -7 ] + .......... + [ 2013 + ( - 2015 ) ]
có số cặp là : [ ( 2015 - 1 ) : 2 + 1 ] : 2 = 504 ( cặp )
= -2 + -2 + -2 +..........+ -2
= -2 x 504
= -1008
(2/3 + 3/4 + 4/5 +... + 2016/2017) x (1/2 + 2/3 + 3/4 + ...+ 2015/2016) - (1/2 + 2/3 + 3/4 +...+2015/2016) x (2/3 + 3/4 + 4/5 +...+2015/2016)
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
Bài 1 : Tính tổng
a) 1 *2 *3 + 2 * 3 *4 + 3 * 4 * 5 + ... + 2013 * 2014 * 2015 + 2014 * 2015 * 2016
b) 1 * + 3 * 4 + 5 * 6 + ... + 99 * 100
Bài 2 : CMR : 1^3 + 2^3 + 3^3 + ... + n^3 = ( 1 + 2 + 3 + ... + n )^2
Tính :
A = 1 + (-2) + 3 + (-4) + ... + 2014 + (-2015)
B = 1 + (-3) + 5 + (-7) + ... + 2015 + (-2017)
C = 1 + (-2) + (-3) + 4 + 5 + (-6) + (-7) + 8 + ... + (-1998) + (-1999) + (-2000) + 2001
làm bài này mất thời giờ lắm bạn ơi !
Tính: (1*2015+2*2014+3*2013+...+2015*1)/(1*2+2*3+3*4+4*5+...+2015*2016)