cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
cmr \(\frac{a}{a-b}=\frac{c}{c-d}\)
(lưu ý chứng minh bài toán bằng 6 cách)
dạng toán chứng minh tỉ lệ thức
bài 1 cho \(\frac{a}{b}=\frac{c}{d}\)
1,chứng minh \(\frac{a-2b}{b}=\frac{c-2d}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\frac{b}{d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\frac{a-2b}{b}=\frac{c-2d}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=K\)
\(\Rightarrow a=Kb\)và \(c=Kd\)
\(\frac{a-2b}{b}=\frac{Kb-2b}{b}=\frac{b\left(K-2\right)}{b}=K-2\)
\(\frac{c-2d}{d}=\frac{Kd-2d}{d}=\frac{d\left(K-2\right)}{d}=K-2\)
Vậy\(\frac{a-2b}{b}=\frac{c-2d}{d}\)
Bài 1:
Cho tỉ lệ thức \(\frac{x}{4}=\frac{y}{7}\)và xy=112. Tìm x và y.
Bài 2:
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)(với b + d khác 0) ta suy ra được \(\frac{a}{b}=\frac{a+c}{b+d}\)
Bài 3:
Cho a,b,c,d khác 0. Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)hãy suy ra tỉ lệ thức \(\frac{a-b}{a}=\frac{c-d}{c}\)
Giúp mk vs mk sẽ tick cho nha!
Bài 1: Ta có: \(\frac{x}{4}=\frac{y}{7}\Rightarrow7x=4y\) (1)
=> 7xy=4yy
=> 7.112=4.y2
=> y2=784:4
=> y2=196.
Mà vì 196= 14.14 => y=14 (2)
TỪ (1) và (2) => 14.4=x.7
=> x=56:7=8
Vậy x=8;y=14
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Chứng minh các tỉ lệ thức:\(\frac{a-c}{c}=\frac{b-d}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}-1=\frac{b}{d}-1\Rightarrow\frac{a-c}{c}=\frac{b-d}{d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)( tính chất dãy tỉ số bằng nhau)
=>\(\frac{a-c}{c}=\frac{b-d}{d}\)
làm giúp mk cách khác với cô bắt làm 3 cách
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).CMR:\(\frac{a^2+b^2}{ab}=\frac{c^2+d^2}{cd}\)(giá trị tỉ lệ thức cần chứng minh có nghĩa)
chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\)(a-b ko bằng 0, c-d ko bằng 0)ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
BÀI 62 * TRANG 31 SBT TOÁN 7Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)chứng tỏ rằng nếu \(b\ne-d\)thì \(\frac{a+c}{b+d}=\frac{a}{b}\), nếu \(b\ne d\)thì \(\frac{a-c}{b-d}=\frac{a}{b}\)
BÀI 63 TRANG 32 :
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d},c\ne+-d\) chứng tỏ rằng :
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)
tham khảo trên vietjack.com í
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng ta có tỉ lệ thức sau: \(\frac{a-b}{b}=\frac{c-d}{d}\)
CÁC BÀI TẬP DẠNG CHỨNG MINH TỈ LỆ THỨC
BÀI 1: Cho \(\frac{a}{b}=\frac{b}{d}\)Chứng minh \(\frac{a^2+b^2}{b^2+d^2}\)=\(\frac{a}{d}\)
Bài 2: Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) Chứng minh \(\left(\frac{â+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Bài 3: Cho \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\) Chứng minh \(\frac{\left(a-c\right)^2}{\left(a-b\right).\left(b-c\right)}=4\)
,Cho a/b=c/d CMR .Các tỉ lệ thức sau bằng nhau ( giả thiết các tỉ lệ thức đều có nghĩa )
\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Còn cách CM nào khác cách này ko \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Còn nha. Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}^{\left(1\right)}\)
Lại có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}^{\left(2\right)}\)
Từ (1) và (2) => đpcm