Cho A = 3^0+3^1+3^2+3^3+....+3^2011+3^2012
Chứng minh rằng : ( A-1) chia hết 40
Cho A= 3^0+3^1+3^2+3^3+...+3^2011+3^2012.Chứng minh rằng:(A-1)chia hết cho 40
A=(3^0+3^1+3^2+3^3)+(3^4+3^5+3^6+3^7)+...+(3^2009+3^2010+3^2011+3^2012)
A=40+3^4*(1+3+3^2+3^3)+...+3^2009*(1+3+3^2+3^3)
A-1=40+80*40+...+3^2009*40
A-1=40*(1+80+..+3^2009)
Cho A = 30 + 31 + 32 + 33 + ... + 32011 + 32012. Chứng minh rằng : ( A - 1 ) chia hết cho 40
A = 30 + 31 + 32 + 33 + ... + 32011 + 32012
A = 1+( 31 + 32 + 33 + ... + 32011 + 32012
A-1 = 31 + 32 + 33 + ... + 32011 + 32012
A-1 có 2012 số hạng ,nhóm 4 số hạng liên tiếp với nhau , ta được 503 nhóm :
A-1=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^2009(1+3+3^2+3^3)=40.(3+3^5+...+3^2009)
=> (A-1) chia hết cho 40
Cho A = 3^0+ 3^1+3^2 +.......+3^11
chứng minh rằng A chia hết cho 13 , A chia hết cho 40, A chia hết cho 364
lạnh quá,không muốn nghĩ nữa......Z...z...z
Ta có: \(A=3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=3.40+3^5.40+...+3^{2009}.40\)
\(=120+3^4.120+...+3^{2008}.120\)
\(=120\left(1+3^4+...+3^{2008}\right)\)
Vì \(120⋮120\) nên \(120\left(1+3^4+...+3^{2008}\right)⋮120\)
hay \(A⋮120\) (đpcm)
Cho A=1^2011+2^2011+3^2011+...99^2011+100^2011 và B=1+2+3+...+99+100.Chứng minh rằng A chia hết cho B
Cho A=30+31+32+33+........+32011+32012.Sao cho (A-1)chia hết cho 40
Cho A = 1 + 3 + 3 ^ 2 + 3 ^ 3 + .....3 ^ 11 .Chứng minh rằng :a, A chia hết cho 13 b,A chia hết cho 40
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Ủng hộ mk nha !!! ^_^
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Bài 1 : Chứng minh rằng
1+3+3^2+...+3^2011 chia hết cho 10
Bài 2 : So sánh
A = 2^0 + 2^1 + 2^2 + ... +2^12 và B = 2^11
Bài 1:
Đặt M = 1 + 3 + 3^2 + ...+ 3^2011
=> 3M = 3 + 3^2 + 3^3 + ...+ 3^2012
3M - M = 3^2012 - 1
2M = 3^2012 - 1
2M = (3^4).(3^4)...(3^4) -1 ( có 503 thừa số 3^4)
2M = (...1).(...1)...(...1) - 1
2M = (....1) -1
2M = (....0) chia hết cho 10
Bài 2:
ta có: A = 2^0 + 2^1 + 2^2 + ...+ 2^12
=> 2A = 2^1 + 2^2 + 2^3 + ....+ 2^13
=> 2A-A = 2^13 - 1
A = 2^13 - 1
A = 2^13 -1 > B = 2^11
Chứng minh A=2^1+2^2+2^3+2^4+.....+2^2011 chia hết cho 3 và 7
So sánh A=2^0+2^2+2^3+2^4+....+2^2010 và B=2^2011-1
Bài 1: (Em à bài này phải là
A=20+21+22+23+24+.....+22011 mới đúng )
Nếu thế ta giải như sau:
- Có A=20+21+22+23+24+.....+22011
Nên 2A = 2 (20+21+22+23+24+.....+22011 )
= 21+22+23+24+.....+22011 + 22012
=>A = 2A - A = 22012 - 20
= 22012 - 1
Vì 22012 = 22.1006 =(22)1006 chia 3 dư 1 (vì 22 chia 3 dư 1)
Nên A = 22012 - 1 chia hết cho 3
- Lại có A=20+21+22+23+24+.....+22011
=(20+21+22)+(23+24+ 25) + ( 26 +....+22008) + (22009 + 22010 +22011 )
= (20+21+22)+23.(20+21+22) + ....+ 22009.(20+21+22)
=7+23 . 7 + ....+ 22009. 7
=7. (1+23+ +26 +29 + ....+ 22009) chia hết cho 7
Vậy A chia hết cho cả 3 và 7
Bài 2:
Có A=20+21+22+23+24+.....+22010
Nên 2A = 2 (20+21+22+23+24+.....+22010 )
= 21+22+23+24+.....+22011 + 22011
=>A = 2A - A = 22011 - 20
= 22011 - 1
= B
Vậy A = B