1-2+3-4+5-6+......+101
1-1/2-2+2/3+3-3/4-4+4/5+5-5/6-...-100/101+101+101/102
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!
A = 1-2+3-4+5-6+.....+97-98+99-100+101
B = 1+2-3-4+5+6-7-8+......+98-99-100+101
B=1+2-(3+4)+5+6-..-100+101
B=(3+11+19+...+195)-(7+15+...+199)+101
B=25.99-25.103+101
B=-100+101=1
Vậy B=1
a=151
B=1 nha
1/2:(-3/2):4/3:(-5/4):6/5:(-7/6):....:(-101/100)
Tính hợp lí:
(1+2+3+...+101) : (1-2+3-4+5-6+...+99-100+101)
M=1÷2×3÷4×5÷6×...×99÷100 & N=2÷3×4÷5×6÷7×...×100÷101
M*N=1/2*3/4*5/6*..*99/100*2/3*4/5*6/7*..... = 1/101 (1)
Mặt khác :
1/2 <2/3
3/4<4/5
........
99/100 < 100/101
=>1/2*3/4*5/6*....*99/100 < 2/3*4/5*6/7*....*100/101
hay M< N =>M*M<M*N hay M^2 < 1/101 <1/100
=>M^2 < 1/100 hay M^2 < (1/10)^2 =>M<1/10 (vì M>0 ) (đpcm)
yêu cầu là j?k có yêu cầu sao mà giải dc hả bạn??
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
-2/5 + (4/6 - 1/15) - -1/10
1/2 - (-7/3 + 2/5) + 1/8
\(\dfrac{-2}{5}+\left(\dfrac{4}{6}-\dfrac{1}{15}\right)-\dfrac{-1}{10}\\ =\dfrac{-2}{5}+\dfrac{3}{5}+\dfrac{1}{10}\\ =\dfrac{1}{5}+\dfrac{1}{10}\\ =\dfrac{3}{10}\\ \dfrac{1}{2}-\left(\dfrac{-7}{3}+\dfrac{2}{5}\right)+\dfrac{1}{8}\\ =\dfrac{1}{2}+\dfrac{29}{15}+\dfrac{1}{8}\\ =\dfrac{73}{30}\\ =\dfrac{73}{30}+\dfrac{1}{8}\\ =\dfrac{307}{120}\)
\(-\dfrac{2}{5}+\left(\dfrac{4}{6}-\dfrac{1}{15}\right)-\left(-\dfrac{1}{10}\right)\)
\(=-\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{1}{10}\)
\(=\dfrac{1}{5}+\dfrac{1}{10}\)
\(=\dfrac{2}{10}+\dfrac{1}{10}=\dfrac{3}{10}\)
\(\dfrac{1}{2}-\left(-\dfrac{7}{3}+\dfrac{2}{5}\right)+\dfrac{1}{8}\)
\(=\dfrac{1}{2}+\dfrac{29}{15}+\dfrac{1}{8}\)
\(=\dfrac{73}{30}+\dfrac{1}{8}=\dfrac{307}{120}\)
rut gon A= 1*4/2*3+2*5/2*4+3*6/4*5+...+98*101/99*100