Tính f(-1)
f(x) = 99x + 98x2 + 97x3 +...+ 2x98 + x99 + 1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho đa thức: f(x)=99x+98x2+97x3+... +2x98+x99+1. tính f(-1)
Lời giải:
$f(x)=99x+98x^2+97x^3+....+2x^{98}+x^{99}+1$
$f(-1)=-99+98-97+96-....+2-1+1$
$=-1+2-3+4+....-97+98-99+1$
$=(-1+2)+(-3+4)+...+(-97+98)-99+1$
$=1+1+...+1-99+1$
$=49-99+1=-49$
1x99+2x98+3x97+....+97x3+98x2+99x1
tìm số TỰ NHIÊN NHỎ NHẤT SAO CHO KHI CHIA NÓ CHO 4,5,6 LẦN LƯỢT CÓ SỐ DƯ LÀ 3,4,5 VÀ SỐ ĐÓ CHIA HẾT CHO 13
Tính
C=1x99 + 2x98 + 3x97 +....+98x2+99x1
C = 1×99 + 2×98 + 3×97 + ... + 98×2 + 99×1
C = 1×(100 - 1) + 2×(100 - 2) + 3×(100 - 3) + ... + 98×(100 - 98) + 99×(100 - 99)
C = 1×100 - 12 + 2×100 - 22 + 3×100 - 32 + ... + 98×100 - 982 + 99×100 - 992
C = (1×100 + 2×100 + 3×100 + ... + 98×100 + 99×100) - (12 + 22 + 32 + ... + 992)
C = 100×(1 + 2 + 3 + ... + 98 + 99) - [(1 + 0)×1 + (1 + 1)×2 + (1 + 2)×3 + ... + (1 + 98)×99]
C = 100×(1 + 99)×99:2 + (1 + 0×1 + 2 + 1×2 + 3 + 2×3 + ... + 99 + 98×99)
C = 50×100×99 + [(1 + 2 + 3 + ... + 99) + (0×1 + 1×2 + 2×3 + ... + 98×99)]
C = 495000 + [(1+99)×99:2 + (0×1 + 1×2 + 2×3 + ... + 98×99)]
C = 495000 + 50 × 99 + (0×1 + 1×2 + 2×3 + ... + 98×99)
C = 495000 + 4950 + (0×1 + 1×2 + 2×3 + ... + 98×99)
Đặt A = 0×1 + 1×2 + 2×3 + ... + 98×99
3A = 1×2×(3-0) + 2×3×(4-1) + ... + 98×99×(100-97)
3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + ... + 98×99×100 - 97×98×99
3A = (1×2×3 + 2×3×4 + ... + 98×99×100) - (0×1×2 + 1×2×3 + ... + 97×98×99)
3A = 98×99×100
A = 98×33×100
A = 323400
C = 495000 + 4950 + 323400
C = 823350
Tính nhanh
C=1x99 + 2x98 + 3x97 +....+98x2+99x1
C = 1×99 + 2×98 + 3×97 + ... + 98×2 + 99×1
C = 1×(100 - 1) + 2×(100 - 2) + 3×(100 - 3) + ... + 98×(100 - 98) + 99×(100 - 99)
C = 1×100 - 12 + 2×100 - 22 + 3×100 - 32 + ... + 98×100 - 982 + 99×100 - 992
C = (1×100 + 2×100 + 3×100 + ... + 98×100 + 99×100) - (12 + 22 + 32 + ... + 992)
C = 100×(1 + 2 + 3 + ... + 98 + 99) - [(1 + 0)×1 + (1 + 1)×2 + (1 + 2)×3 + ... + (1 + 98)×99]
C = 100×(1 + 99)×99:2 + (1 + 0×1 + 2 + 1×2 + 3 + 2×3 + ... + 99 + 98×99)
C = 50×100×99 + [(1 + 2 + 3 + ... + 99) + (0×1 + 1×2 + 2×3 + ... + 98×99)]
C = 495000 + [(1+99)×99:2 + (0×1 + 1×2 + 2×3 + ... + 98×99)]
C = 495000 + 50 × 99 + (0×1 + 1×2 + 2×3 + ... + 98×99)
C = 495000 + 4950 + (0×1 + 1×2 + 2×3 + ... + 98×99)
Đặt A = 0×1 + 1×2 + 2×3 + ... + 98×99
3A = 1×2×(3-0) + 2×3×(4-1) + ... + 98×99×(100-97)
3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + ... + 98×99×100 - 97×98×99
3A = (1×2×3 + 2×3×4 + ... + 98×99×100) - (0×1×2 + 1×2×3 + ... + 97×98×99)
3A = 98×99×100
A = 98×33×100
A = 323400
C = 495000 + 4950 + 323400
C = 823350
M = 1x99 + 2x98 +... 98x2 + 99x1
Cho f(x)= x^30-99x^29-99x^28-...-88x+2021. Tính giá trị của f(X) tại x= 100
Cho f(x) = x6 + 99x5 - 99x4 + 99x3 - 99x2 + 99x
Tính f(-100)
Giải hộ mình cái các bạn ơi !!!
Ta có f(-100) = 1006 - 99.1005 - 99.1004 - 99.1003 - 99.1002 - 99.100
= 1006 - 99(1005 + 1004 + 1003 + 1002 + 100)
Đặt C = 1005 + 1004 + 1003 + 1002 + 100
=> F(-100) = 1006 - 99C
Khi đó 100C = 1006 + 1005 + 1004 + 1003 + 1002
Lấy 100C trừ C theo vế ta có :
100C - C = (1006 + 1005 + 1004 + 1003 + 1002) - ( 1005 + 1004 + 1003 + 1002 + 100)
99C = 1006 - 100
Khi đó f(-100) = 1006 - 1006 + 100 = 100
bạn ơi có gì đó sai sai
cho đa thức f(x)=x8-99x7-.....-99x+25 tính f(100)
mình đang cần gấp
Ta có \(x=100\Rightarrow x-1=99\)
\(f\left(x\right)=x^8-\left(x-1\right)x^7-...-\left(x-1\right)x+25\)
\(=x^8-x^8+x^7-...-x^2+x=x+25\)
\(\Rightarrow f\left(100\right)=100+25=125\)
F[x]=x6+99x5-99x4+99x3-99x2+99x tính f[x] tại x= -100