Những câu hỏi liên quan
Kuro Kazuya
Xem chi tiết
Kuro Kazuya
2 tháng 2 2017 lúc 3:45

Ta có: \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\le1-\frac{d}{d+1}=\frac{1}{d+1}\\\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{a}{a+1}=\frac{1}{a+1}\\\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{b}{b+1}=\frac{1}{b+1}\\\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\le1-\frac{c}{c+1}=\frac{1}{c+1}\end{matrix}\right.\)

Áp dụng BĐT Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\frac{1}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\\\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{b+1}\ge\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{c+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\end{matrix}\right.\)

Nhân từng vế:

\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\frac{a^3b^3c^3d^3}{\left(a+1\right)^3\left(b+1\right)^3\left(c+1\right)^3}}\)

\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

\(\Rightarrow1\ge81abcd\)

Vậy \(abcd\le\frac{1}{81}\left(đpcm\right)\)

p/s : lí do tớ tự trả lời câu hỏi của mình là để coi câu trả lời của mình có đúng hay ko thôi nha , mong các bạn đứng có hiểu lầm , nếu bạn nào có cách nào nhanh và gọn hơn thì phiền các bạn chỉ dùm luôn nha.

fairy
Xem chi tiết
Thắng Nguyễn
15 tháng 6 2017 lúc 22:24

Ẹt số xui đưa link cũng bị duyệt

Áp dụng BĐT AM-GM ta có: 

\(\frac{1}{d+1}=1-\frac{d}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\). TƯơng tự cho 3 BĐT còn lại

\(\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)

Nhân theo vế 4 BDT trên ta có: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

Hay ta có ĐPCM

Huỳnh Kim Nhật Thanh
Xem chi tiết

Bài 1. 
A = 1/(a + 1) + 1/(b + 1) + 1/(c + 1) + 1/(d + 1) ≥ 3 
→ 1/(a + 1) ≥ 1 - 1/(b + 1) + 1 - 1/(c + 1) + 1 - 1/(d + 1) 
→ 1/(a + 1) ≥ b/(b + 1) + c/(c + 1) + d/(d + 1) 
áp dụng BĐT Cauchy cho 3 số dương: 
b/(b + 1) + c/(c + 1) + d/(d + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)] 
→ 1/(a + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)] tương tự 
1/(b + 1) ≥ 3 ³√(acd)/[(a + 1)(c + 1)(d + 1)] 
1/(c + 1) ≥ 3 ³√(abd)/[(a + 1)(b + 1)(d + 1)] 
1/(d + 1) ≥ 3 ³√(abc)/[(a + 1)(b + 1)(c + 1)] 
nhân theo vế → 1/[(a + 1)(b + 1)(c + 1)(d + 1)] ≥ 81abcd/[(a + 1)(b + 1)(c + 1)(d + 1)] 
→ 1 ≥ 81abcd → abcd ≤ 1/81 

TK NHA

HeroZombie
19 tháng 8 2017 lúc 13:54

Áp dụng BDT AM-GM ta có:

\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}+1-\frac{1}{d+1}\)

\(=\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\)

\(\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\)

Tương tự cho các BĐT còn lại cũng có:

\(\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\)

\(\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)

\(\frac{1}{d+1}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Nhân theo vế 4 BĐT trên ta có:

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}\right)^3}\)

\(\Rightarrow abcd\le\frac{1}{81}\)

Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Trần Thanh Phương
8 tháng 9 2019 lúc 6:54

Lời giải :

Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3\)

\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}+1-\frac{1}{1+d}\)

\(\Leftrightarrow\frac{1}{1+a}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\) ( Cô-si )

Chứng minh tương tự ta cũng có :

\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\); \(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\);

\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Nhân theo vế 4 BĐT ta được :

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge81\sqrt[3]{\frac{a^3b^3c^3d^3}{\left(a+1\right)^3\left(b+1\right)^3\left(c+1\right)^3\left(d+1\right)^3}}\)

\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge81\cdot\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

\(\Leftrightarrow1\ge81\cdot abcd\)

\(\Leftrightarrow abcd\le\frac{1}{81}\)

Ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\frac{1}{3}\)

TS Minh Quan
Xem chi tiết
Đình Sang Bùi
16 tháng 8 2018 lúc 20:57

Vô lí vì a+b+c=0\(\Rightarrow\frac{5}{a+b+c}\)không có đáp án

Hà Lê
Xem chi tiết
Thiên An
12 tháng 7 2017 lúc 17:52

Ta chứng minh bất đẳng thức sau  

Với x, y, z > 0 ta luôn có  \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)  (1)

Theo BĐT Cô-si

\(x^4+x^4+y^4+z^4\ge4\sqrt[4]{x^8y^4z^4}=4x^2yz\)

\(y^4+y^4+z^4+x^4\ge4\sqrt[4]{y^8z^4x^4}=4y^2zx\)

\(z^4+z^4+x^4+y^4\ge4\sqrt[4]{z^8x^4y^4}=4z^2xy\)

Cộng vế theo vế ta được:  \(4\left(x^4+y^4+z^4\right)\ge4\left(x^2yz+y^2zx+z^2xy\right)\)

\(\Leftrightarrow\)  \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

Vậy (1) đc c/m

Bất đẳng thức cần c/m có thể viết lại thành

\(\frac{abcd}{a^4+b^4+c^4+abcd}+\frac{abcd}{b^4+c^4+d^4+abcd}+\frac{abcd}{c^4+d^4+a^4+abcd}+\frac{abcd}{d^4+a^4+b^4+abcd}\le1\)

Áp dụng (1) ta có  

\(\frac{abcd}{a^4+b^4+c^4+abcd}\le\frac{abcd}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)

Tương tự  

\(\frac{abcd}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)

\(\frac{abcd}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)

\(\frac{abcd}{d^4+a^4+b^4+abcd}\le\frac{c}{a+b+c+d}\)

Cộng theo vế suy ra đpcm.

Mai Thành Đạt
Xem chi tiết
Thắng Nguyễn
6 tháng 1 2018 lúc 0:16

Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)

Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)

Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)

Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)

\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Tương tự cho 3 BĐT còn lại rồi cộng theo vế:

\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)

Thắng  Hoàng
5 tháng 1 2018 lúc 18:56

sorry nha!Mik ko bít làm.???

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Phan Nghĩa
5 tháng 7 2020 lúc 14:03

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)

\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)

Cộng vế với vế ta được :

\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)

Vậy ta có điều phải chứng mình 

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
5 tháng 7 2020 lúc 15:47

Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *

Khi đó:

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

Tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)

\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
5 tháng 7 2020 lúc 16:12

Trời ạ cay vãi shit đánh máy xong rồi tự nhiên bấm hủy T.T bài 1 ngắn đã đành ......

\(WLOG:a\ge b\ge c\)

Ta dễ có:\(\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}\)

\(\le\frac{a}{b+c+1}+\frac{b}{b+c+1}+\frac{c}{b+c+1}\)

\(=\frac{a+b+c}{b+c+1}\)

Ta cần chứng minh:

\(\frac{a+b+c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)

\(\Leftrightarrow a+b+c+\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(b+c+1\right)\le1+b+c\)

\(\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1+b+c\right)\le1-a\) ( 1 )

Mà theo AM - GM :

\(\left(1-b\right)\left(1-c\right)\left(1+b+c\right)\le\left(\frac{1-b+1-c+1+b+c}{3}\right)^3=1\)

Khi đó ( 1 ) đúng

Vậy ta có đpcm

Nếu bài toán trở thành

\(\frac{a}{bc+2}+\frac{b}{ca+2}+\frac{c}{ab+2}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\) thì bài toán khó định hướng hơn rất nhiều :D

Khách vãng lai đã xóa
Trang-g Seola-a
Xem chi tiết