cho x + y =1 . Tìm GTNN của M = x ^ 3 + y^3 + 2xy
Mai mình thi rồi giúp với
a Cho x + y = 5 tìm GTNN của
A = |x+1| + |y-2|
b Cho x - y = 2 Tìm GTNN của
B = |2x+1| + |2y+1|
c Cho 2x+y = 3 Tìm GTNN của
C = |2x+3| + |y+2| +2
GIÚP MÌNH NHA MAI NỘP RỒI!!!!!!!!!!
a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)
\(\ge\left|x+1+y-2\right|\)
\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0
Vậy Min A = 4 <=> (x + 1)(y - 2) \(\ge\)0
Cho x,y là 2 số dương thỏa mãn x2 + y2 = 8. Tìm GTNN của biểu thức:
M = \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\)
M.n giúp mình với, cần gấp mai thi rồi.
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) , dấu đẳng thức xảy ra khi và chỉ khi a = b
Ta có : \(M=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\ge\frac{4}{\sqrt{1+x^2}+\sqrt{1+y^2}}\)
Mặt khác, theo bđt Bunhiacopxki : \(\left(1.\sqrt{1+x^2}+1.\sqrt{1+y^2}\right)^2\le\left(1^2+1^2\right)\left(2+x^2+y^2\right)\)
\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}\le\sqrt{20}=2\sqrt{5}\)
Do đó : \(M\ge\frac{4}{2\sqrt{5}}=\frac{2\sqrt{5}}{5}\). Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2+y^2=8\\\sqrt{1+x^2}=\sqrt{1+y^2}\end{cases}\Leftrightarrow}x=y=2\)(vì x,y >0)
Vậy \(MinM=\frac{2\sqrt{5}}{5}\Leftrightarrow x=y=2\)
\(M\ge\frac{\left(1+1\right)^2}{\sqrt{1+x^2}+\sqrt{1+y^2}}\ge\frac{4}{\frac{1+x^2+5+1+y^2+5}{2\sqrt{5}}}=\frac{2\sqrt{5}}{5}\)
dấu = xảy ra khi x=y và x^2+y^2=8=> x=y=2
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
Cho xy=1. Tìm GTNN của |x + y|
Giúp mình với, sáng mai mình nộp rồi
Vì xy = 1
Suy ra : x , y thuộc Ư(1) = {-1;1}
+ x = -1 và y = -1 thì GTNN của |x + y| = 0
+ x = 1 và y = 1 thì GTNN của |x + y| = 2
Vậy GTNN của |x + y| = 0
Banj lam sai roi. Maf minhf cungx biet lam roi
Bài 3: tìm x, y biết: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{y}\) và x4y4 = 81
Bài 4: với giá trị nào của x thì A = |x - 3| + |x - 5| + |x - 7| đạt gtnn?
Bài 5: với giá trị nào của x thì B = |x - 1| + |x - 2| + |x - 3| + |x - 5| đạt gtnn?
giúp mình với, lát mình đi học rồi
Bài 3:
Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)
Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)
Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)
Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))
=> a = 9.1 = 9
Ta có: x2 = 9 và y2 = 1
=> x = -3, 3
y = -1; 1
Mình làm bài 4, bài 5 làm tương tự bài 4 nhé
Biết rằng: \(\left|A\right|\ge A\)
\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)
Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)
Với x = 5 thì A đạt gtnn là: 4
1.phân tích đa thức thành nhân tử
a)64xy-96x2y+48x3y-8x4y
2.tìm x, biết
a)3x(x-5)-(x-1)(2+3x)=30
b)(x+2)(x+3)-(x-2)(x+5)=0
c)tìm x, y để M= x2+5y2+2xy+4y+100
3. Xác định r của phép chia đa thức (x20+x11-22014): (x2-1)
4.a) tìm GTNN của A= 5x2+x-1
b)tìm GTLN của B= -x+5x+8
5)chứng minh rằng đắng thức
(x-y)(x4+x3y+x2y2+xy3+y4)= x5-y5
giúp mình với. chiều mình thi rồi mình cảm ơn nhiều lắm
1a) 8xy(8-12x+6x*x-x*x*x)
chú thích x*x là x bình phương
x*x*x là x lập phương
2. a) 3x (x-5)- (x-1)(2+3x)=30
3x*x-15x-2x-3x*x+2+3x=30
14x=28
x=2
b) (x+2)(x-3)-(x-2)(x+5)=0
x*x-3x+2x-6-x*x-5x+2x+10=0
2x=-4
x=-2
còn mấy bài còn lại mình không biết
Mai mình thi rồi nên giúp mình với!
Tìm GTNN của biểu thức:
a. \(x^2+y^2\)- xy -2x - 2y +9
b. Biết a3-b3=3ab+1. Tính giá trị biểu thức sau: A=a-b
c. Tính GTNN: \(\frac{3x^2-6x+9}{x^2-2x+3}\)
Tìm GTNN của M=2015+3(x^2+1)^2016+|x+y|^2017
Mình cần gấp lắm, giúp mình nha
Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)
=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)
\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)
Vậy gtnn của M = 2018 đạt tại x = y = 0.
cho bt 2 đại lượng x và y TLT với nhau và khi x=6 thì y=30
a,tìm hệ số tỉ lệ của y đối với x
b,tính giái trị của y khi x=-2;x=-1;x=2
c,tính giá trị của x khi y=-10;y=-5;y=5
giải hộ mình với ngày 28/12/2020 mình thi rồi mong mấy bạn giúp mình tìm ra câu trả lời nhé
sớm nhất có thể nhé
a,Vì y tỉ lệ thuận với x theo hệ số tỉ lệ k⇒y=k.x⇒k=\(\dfrac{y}{x}\)=\(\dfrac{30}{6}\)=5Vậy hệ số tỉ lệ của y đối với x là 5b,Khi x=-2 thì y=5.(-2)=-10 Khi x=-1 thì y=5.(-1)=-5 Khi x=2 thì y=5.2=10c,Ta có y=k.x⇒x=\(\dfrac{y}{k}\) Khi y=-10 thì x=\(\dfrac{-10}{5}\)=-2 Khi y=-5 thì x=\(\dfrac{-5}{5}\)=-1 Khi y=5 thì x=\(\dfrac{5}{5}\)=1
a,Vì y tỉ lệ thuận với x theo hệ số tỉ lệ k⇒y=k.x⇒k=306306=5Vậy hệ số tỉ lệ của y đối với x là 5b,Khi x=-2 thì y=5.(-2)=-10 Khi x=-1 thì y=5.(-1)=-5 Khi x=2 thì y=5.2=10c,Ta có y=k.x⇒x=−105−105=-2 Khi y=-5 thì x=5555=1