Chứng minh rằng số chính phương lẻ chia cho 8 luôn dư 1
chứng minh rằng số chính phương lẻ luôn chia 8 dư 1
Bài 1:
a) Chứng minh rằng số chính phương lẻ thì chia 8 dư 1
b) Chứng tỏ rằng nếu 2n + 1 và 3n + 1 là các số chính phương lẻ thì n chia hết cho 40 ( n thuộc N*)
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Chứng minh rằng số chính phương lẻ chia 8 dư 1
gọi số chính phương là \(a^3\)sau đó phân tích là ra mà
Giải:
Trả lời:
số 9 là số chính phương lẻ:9:8 dư 1
giải bài này giùm với :
chứng minh rằng khi chia bình phương của một số nguyên lẻ cho 8 luôn luôn được số dư là 1.
chứng minh rằng số chính phương lẻ chia 4 dư 1
giả sử số chính phương lẻ là a2
<=> a có 2 dạng là {4k+1;4k+3}
+xét a=4k+1
=>a2=(4k+1)2=16k2+8k+1=4x(4k2+2k)+1 chia cho 4 dư1 (1)
+xét a=4k+3
=>a2=(4k+3)2=16K2+24k+8+1=4x(4k2+6k+2)+1 chia cho 4 dư1 ( 2)
từ (1)và(2) suy ra điều phải chứng minh
chứng minh rằng số chính phương lẻ chia 4 dư 1
Gọi số chính phương đó là \(\left(2n+1\right)^2\)
Ta có: \(\left(2n+1\right)^2=4n^2+4n+1\)
\(=4n\left(n+1\right)+1\)(chia 4 sư 1)
chứng minh rằng số chính phương lẻ chia 4 dư 1
Chỉ biết mấy cái sau về đặc điểm của số chính phương mà không biết chứng minh . Các bạn giúp mình chứng minh nhé .
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)x(a-b).Số ước nguyên duơng của số chính phương là một số lẻ.Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu
VD: 21 không là số chính phương
81=92 là số chính phương
Chứng minh rằng một số chính phương chia cho 4 luôn có số dư là 0 hoặc 1
Gọi số chính phương là a2(\(a\in N\))
*Chứng minh a2 chia 4 dư 0 hoặc 1
Với số tự nhiên a bất kì,ta có: a = 4k;a = 4k + 1;a + 4k +2;4k + 3
+)a = 4k
=>a2= (4k)2 = 16k2 \(⋮\)4 dư 0
+)a = 4k + 1
=> a2 = (4k + 1)2=16k2 + 8k + 1 chia 4 dư 1
+)a = 4k + 2
=>a2=(4k + 2)2=16k2 + 16k + 4 chia 4 dư 0
+)a = 4k + 3
=>a2=(4k + 3)2=16k2 + 36 + 9 chia 4 dư 1
Vậy một số chính phương chia cho 4 luông có số dư là 1 và 0