Chứng minh rằng : 22000 + 22002 chia hết cho 5120 .
Chứng minh rằng:
22002 __ 4 chia hết cho 31
Chứng minh rằng B= 22000 + 22002 chia hết cho 5120
Chứng minh rằng :
A = 2 mũ 2000 + 2 mũ 2002 chia hết cho 5120
TRẢ LỜI SỚM GIÚP MÌNH NHA
Thank you
b= 22000 +22002
b=22000 x 1+ 22000 x22
b= 22000 x (1+22)
b= 22000 x 5
ta thấy 5120 : 5 = 1024
phân tích 1024 ra cơ số 2 được 210
vậy 5120= 5 x 210
=> b = 22000 x 5 x (5x 210)
chứng minh
22000+22002 chia hết cho 5120
\(2^{2000}+2^{2002}=2^{2000}\left(1+2^2\right)\\ =2^{1990}\cdot2^{10}\cdot5\\ =2^{1990}\cdot5120\\ \RightarrowĐpcm\)
chứng minh D = 22000 + 22002 chia hết cho 5120
D= 22000+22002
= 21990.(210+212)
= 21990 . 5120 chia hết cho 5120
=> D chia hết cho 5120
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2.
A=4+22+23+....+220
2A=8+23+24+...+221
=> A+2A-A = (8+23+24+...+221) - (4+22+23+....+220)
=>A=221+8 - (22+4)=221
=>A là 1 lũy thừa của 2
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2
A= 4+22+23+....+220
2A= 8+23+24+...+221
A + 2A -A = (8+2^3+2^4+...+2^21) - (4+2^2+2^3+....+2^20)
A= 2^21+8 - (2^2+4)=2^21
Vậy A là 1 lũy thừa của 2
Cho A=4+22+23+24+...+22002.Chứng minh rằng A là một luỹ thừa của 2
Giúp đi nhanh k cho
Cho A=4+22+23+24+...+22002. Chứng minh rằng A là một luỹ thừa của 2
giúp với nhanh kich cho
vậy nên mình mới hỏi chứ bỏ 23 đi thì mình tự giải cũng đc