\(\frac{2}{x\left(x+2\right)}\)+ \(\frac{2}{\left(x+2\right)\left(x+4\right)}\)+ \(\frac{2}{\left(x+4\right)\left(x+6\right)}\)+ \(\frac{1}{\left(x+6\right)\left(x+8\right)}\)+ \(\frac{1}{\left(x+8\right)\left(x+10\right)}\)+ \(\frac{1}{x+10}\)= ?
Tính A = \(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+5\right)}+\frac{8}{\left(x+5\right)\left(x+6\right)}\)
A= \(\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{2}{x+3}-...+\frac{8}{x+5}-\frac{8}{x+6}\)
A=\(\frac{1}{x+1}+\frac{1}{x+3}+\frac{2}{x+4}+\frac{4}{x+5}-\frac{8}{x+6}\)
Rồi tiếp tục làm nhé bạn.
\(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right).\left(x+8\right)}+\frac{6}{\left(x+8\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(=\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(=\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(=\frac{x+16}{\left(x+2\right)\left(x+14\right)}-\frac{x+2}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(=\frac{8}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow x=8\)
Tìm x,
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Leftrightarrow\frac{x}{\left(x+2\right)\left(x+14\right)}=\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}-\frac{1}{x+8}-\frac{1}{x+14}\)
\(\Leftrightarrow\frac{x}{\left(x+2\right)\left(x+14\right)}=\frac{1}{x+2}-\frac{1}{x+14}\)
\(\Leftrightarrow\frac{x}{\left(x+2\right)\left(x+14\right)}=\frac{\left(x+14\right)-\left(x+2\right)}{\left(x+2\right)\left(x+14\right)}\)
\(\Leftrightarrow x=\left(x+14\right)-\left(x+2\right)\)
\(\Leftrightarrow x=x+14-x-2\)
\(\Leftrightarrow x=\left(x-x\right)+\left(14-2\right)\)
\(\Leftrightarrow x=0+12\)
\(\Leftrightarrow x=12\)
Tìm x
\(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right).\left(x+8\right)}+\frac{6}{\left(x+8\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\frac{12}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow x=12\)
Tìm x
\(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
=>\(\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
=>\(\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
=>\(\frac{x+14-x-2}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
=>\(\frac{12}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
=>x=12
Ta có: \(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{x+14-x-2}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{12}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow x=12\)
Vậy \(x=12\)
tìm x: \(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}-\frac{1}{x+8}-\frac{1}{x+16}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+16}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{\left(x+16\right)-\left(x+2\right)}{\left(x+2\right)\left(x+16\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow x+16-x-2=x\)
\(\Rightarrow x=14\)
Giải phương trình:
1. \(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
2. \(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
3. \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
4. \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
5. \(\frac{x-4}{5}-\frac{3x-2}{10}-x=\frac{2x-5}{3}-\frac{7x+2}{6}\)
6. \(\frac{\left(x+2\right)\left(x+10\right)}{3}-\frac{\left(x+4\right)\left(x+10\right)}{12}=\frac{\left(x-2\right)\left(x+4\right)}{4}\)
7. \(\frac{\left(x+2\right)^2}{8}-2\left(2x-1\right)=25+\frac{\left(x-2\right)^2}{8}\)
8.\(\frac{7x^2-14x-5}{5}=\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}\)
9. \(\frac{\left(2x-3\right)\left(2x+3\right)}{8}=\frac{\left(x-4\right)^2}{6}+\frac{\left(x-2\right)^2}{3}\)
10. \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
\(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)