Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tô Hoài Dung
Xem chi tiết
Thúy Phạm Thị
Xem chi tiết
Nguyễn Việt Hoàng
15 tháng 8 2020 lúc 9:19

a) ĐKXĐ: \(\hept{\begin{cases}x-9\ne0\\\sqrt{x}\ge0\\\sqrt{x}\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ge0\\x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne9\\x>0\end{cases}}}\)

\(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(\Leftrightarrow A=\frac{x+\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(\Leftrightarrow A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{x-9}\)

b) \(x=\sqrt{6+4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)

\(\Leftrightarrow x=\sqrt{4+4\sqrt{2}+2}-\sqrt{2+2\sqrt{2}+1}\)

\(\Leftrightarrow x=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}\)

\(\Leftrightarrow x=\left|2+\sqrt{2}\right|-\left|\sqrt{2}+1\right|\)

\(\Leftrightarrow x=2+\sqrt{2}-\sqrt{2}-1=1\left(TM\right)\)

Vậy với x= 1 thì giá trị của biểu thức \(A=\frac{\left(1+1\right)\left(1-3\right)}{1-9}=\frac{2.\left(-2\right)}{-8}=\frac{-4}{-8}=\frac{1}{2}\)

c)

Ta có :

\(\frac{x-9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)

+)  \(\frac{1}{A}\)nguyên 

\(\Leftrightarrow1+\frac{2}{\sqrt{x}+1}\)nguyên

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)\)

\(\Leftrightarrow x=1\)

Vậy ..............

Khách vãng lai đã xóa
vuong bao chau
Xem chi tiết
Nguyễn Văn Tuấn Anh
14 tháng 12 2019 lúc 19:48

a) \(A=\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{2-3\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2x-\sqrt{x}-3-x+2\sqrt{x}+8-2+3\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\) 

\(=\frac{\sqrt{x}+3}{\sqrt{x}-4}\)

Khách vãng lai đã xóa
Nguyễn Văn Tuấn Anh
14 tháng 12 2019 lúc 19:51

b) Để \(A\in Z\)

\(\Leftrightarrow\frac{\sqrt{x}+3}{\sqrt{x}-4}=\frac{\sqrt{x}-4}{\sqrt{x}-4}+\frac{7}{\sqrt{x}-4}\in Z\)

=>\(\sqrt{x}-4\inƯ\left(7\right)\)

........

Khách vãng lai đã xóa
Nguyễn Hoàng Tú
Xem chi tiết
Nguyễn Tấn Khoa
Xem chi tiết
Long nguyen van
11 tháng 5 2017 lúc 19:22

moi tay

Huyen Trang Luong
8 tháng 6 2017 lúc 9:41

giải giùm mình bài 5 với

Hồ Nguyễn Quốc  Hưng
25 tháng 6 2018 lúc 15:11

mình ko biết

Đỗ Thị Tú Uyên
Xem chi tiết
jungkook
Xem chi tiết
Sam Sam
Xem chi tiết
Hoàng Thị Lan Hương
12 tháng 7 2017 lúc 9:17

ĐK  \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)

\(\Rightarrow0\le x< \frac{9}{4}\)

c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)

Vậy \(MinR=-3\Leftrightarrow x=0\)

Park Chanyeol
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 7 2016 lúc 22:49

a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)

b) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=-\frac{3}{2\left(\sqrt{x}-3\right)}\)c) Để P nguyên thì \(2\left(\sqrt{x}-3\right)\in\left\{-3;-1;1;3\right\}\)=> x thuộc rỗng.

nguyen thi mai huong
Xem chi tiết