Các anh chị giúp em với nhé. Em sắp thi rồi. Em cảm ơn.
Cho: \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng: \(\frac{2009a-b}{a}=\frac{2009c-d}{c}\)
1 Từ \(\frac{a}{b}=\frac{c}{d}\) suy ra \(\frac{2009a-b}{a}=\frac{2009c-d}{c}\)
2 Cho a,b,c,d >0 biết b=\(\frac{a+c}{2};c=\frac{2bd}{b+d}\) chứng minh \(\frac{a}{b}=\frac{c}{d}\)
chứng minh với a,b,c,d là các số không âm
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>1\)
help me..... ! cuôí tuần này thi loại đội tuyển rùi!
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{a+b+d}>\frac{d}{a+b+c+d}\)
\(A=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(A>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)
\(A>1\)
help me pls:Cho \(\frac{a}{b}=\frac{c}{d}\)khác 1, a,b,c,d khác 0. Chứng tỏ rằng \(\frac{5a-7b}{5a+7b}-\frac{5c-7d}{5c+7d}=0\)
Giup mk zới pls mà em đang từ 6->7 nên các anh chị có j thỉnh giáo cho em cái và các anh chị lưu ý ko dùng \(\sqrt{ }\)bởi em chưa có học
vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{7b}{7d}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{5a}{5c}=\frac{7b}{7d}=\frac{5a-7b}{5c-7d}=\frac{5a+7b}{5c+7d}\)
\(\Rightarrow\frac{5a-7b}{5c-7d}=\frac{5a+7b}{5c+7d}\)
\(\Rightarrow\frac{5a-7b}{5a+7b}=\frac{5c-5d}{7c+7d}\)
\(\Rightarrow\frac{5a-7b}{5a+7b}-\frac{5c-5d}{7c+7d}=0\left(ĐPCM\right)\)
từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
hãy suy ra tỉ lệ thức \(\frac{2009a-b}{a}\)\(=\)\(\frac{2009c-d}{c}\)
giúp tui cái mai nộp rùi !
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow2009-\frac{b}{a}=2009-\frac{d}{c}\Rightarrow\frac{2009a-b}{a}=\frac{2009c-d}{c}.\)
Haizzzzzzzz............. Vừa mới ik thi tháng về (=_=) . Có bài này khó
Các anh , các chị giúp em với ạ !
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\text{. Chứng minh rằng : }\frac{7}{12}< A< \frac{5}{6}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}.\text{ CMR : }\frac{7}{12}< A< \frac{5}{6}\)
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2.\frac{1}{2}-2.\frac{1}{4}-...-2.\frac{1}{98}\)
\(A=1+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{49}\)
\(A=\frac{1}{51}+...+\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{51.25}=\frac{25}{51}< \frac{25}{30}=\frac{5}{6}\) (đpcm)
Và \(A>25.\frac{1}{75}+25.\frac{1}{100}=\frac{7}{12}\)
Ta có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) > 1 / (1.2) + 1 / (3.4) = 1 / 2 + 1 / 12 = 7 / 12 (1)
Lại có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100)
= (1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 < 1 - 1 / 2 + 1 / 3 = 5 / 6 (2)
Từ (1) và (2) => 7 / 12 < A < 5 / 6
trả lời :
Ta có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) > 1 / (1.2) + 1 / (3.4) = 1 / 2 + 1 / 12 = 7 / 12 (1)
Lại có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100)
= (1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 < 1 - 1 / 2 + 1 / 3 = 5 / 6 (2)
Từ (1) và (2) => 7 / 12 < A < 5 / 6
^HT^
các anh chị ở học 24 h nào mà chuyên toán 7 thì giúp em nhé
cho tỉ lệ thức\(\frac{a+b+c}{a+b-c}\)=\(\frac{a-b+c}{a-b-c}\) trong đó b khác 0 . chứng minh c=0
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{a+c}{a-c}\) (1)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1\) (2)
Từ (1) và (2) => \(\frac{a+c}{a-c}=1\Rightarrow a+c=a-c\Rightarrow2c=0\Rightarrow c=0\)
Đội tuyển toán bơ vào đấy giúp với!
Đề bài:cho 4 số a,b,c,d khác 0 thỏa mãn abcd = 1 và a+b+c+d=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\).Chứng minh rằng tồn tại 2 số trong 4 số bằng 1.
Cảm ơn trước bạn nào giải được!
Ta có: abcd=1 và a+b+c+d=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\)
Do đó: a+b-\(\left(\frac{1}{a}+\frac{1}{b}\right)+c+d-\left(\frac{1}{c}+\frac{1}{d}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(1-\frac{1}{ab}\right)+\left(c+d\right)\left(1-\frac{1}{cd}\right)=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(ab-1\right)}{ab}+\left(c+d\right)\left(1-ab\right)=0\)
\(\Leftrightarrow\left(ab-1\right)\left(\frac{a+b}{ab}-c-d\right)=0\)
\(\Leftrightarrow\left(ab-1\right)\left(a+b-abc-abd\right)=0\)
\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(1-ad\right)\right]=0\)
\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(abcd-ad\right)\right]=0\)
\(\Leftrightarrow\left(ab-1\right)\left(1-bc\right)\left(a-abd\right)=0\)
\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)
<=> ab-1=0 hoặc 1-bc=0 hoặc 1-bd=0
<=> ab=1 hoặc bc=1 hoặc bd=1
\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\left(b,d\ne0\right)\)
Chứng minh rằng nếu: \(a\ne\pm b\)ta có các tỉ lệ thức:
\(a)\frac{a}{a+b}=\frac{c}{c+d}\)
\(b)\frac{a}{a-b}=\frac{c}{c-d}\)
\(c)\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho a; b; c; d \(\inℕ^∗\)thỏa mãn \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng: \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)
Giúp với!!!
Khẩn cấp!!!
Ai nhanh cho 3 tích
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow2018ad< 2018bc\)
\(\Leftrightarrow2018ad+cd< 2018bc+cd\)
\(\Leftrightarrow d\left(2018a+c\right)< c\left(2018b+d\right)\)
\(\Leftrightarrow\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(đpcm\right)\)
ta có a/b < c/d
=> ad<bc
=> 2018ad < 2018bc
=> 2018ad + cd < 2018bc + cd
=> ( 2018 a + c ) < c ( 2018 b + d )
=> \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(\text{đ}pcm\right)\)