Giair hệ phương trình: \(\hept{\begin{cases}x^3-y^3=4.\left(4x-y\right)\\y^2-5x^2=4\end{cases}}\)
giải hệ phương trình:\(\hept{\begin{cases}x^3-y^3=4\left(4x-y\right)\\y^2-5x^2=4\end{cases}}\)
Ta có phương trình \(\hept{\begin{cases}x^3-y^3=4\left(4x-y\right)\left(1\right)\\y^2-5x^2=4\left(2\right)\end{cases}}\)
Thế phương trình (2) vào phương trình (1) , ta có \(x^3-y^3=\left(y^2-5x^2\right)\left(4x-y\right)\Rightarrow x^3-y^3=4xy^2-y^3-20x^3+5x^2y\)
\(\Rightarrow21x^3-4xy^2-5x^2y=0\Rightarrow x\left(21x^2-5xy-4y^2\right)=0\)
TH1: x = 0
Khi đó ta có \(y^2=4\Rightarrow\orbr{\begin{cases}y=2\\y=-2\end{cases}}\)
TH2: \(21x^2-5xy-4y^2=0\)
Với \(y=0\Rightarrow x=0\) (Không thỏa mãn phương trình). Vậy \(y\ne0\)
Chia hai vế phương trình cho y2, ta có \(\frac{21x^2}{y^2}-\frac{5x}{y}-4=0\Rightarrow\orbr{\begin{cases}\frac{x}{y}=\frac{4}{7}\\\frac{x}{y}=-\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{7}y\\x=-\frac{1}{3}y\end{cases}}\)
Với \(x=\frac{4}{7}y\Rightarrow y^2-5\left(\frac{4}{7}y\right)^2=4\Rightarrow-\frac{31}{49}y^2=4\) (Vô lý)
Với \(x=\frac{-1}{3}y\Rightarrow y^2-5\left(-\frac{1}{3}y\right)^2=4\Rightarrow\frac{4}{9}y^2=4\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}}\)
Vậy hệ có các nghiệm là (0; 2) , (0; - 2) , (-1; 3) , (1; -3)
giải hệ phương trình:
1) \(\hept{\begin{cases}2\left(x+y\right)+3\left(x+y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{cases}}\)
2)\(\hept{\begin{cases}\left(2x-3\right)\left(2y+4\right)=4x\left(y-3\right)+54\\\left(x+1\right)\left(3y-3\right)=3y\left(x+1\right)-12_{ }\end{cases}}\)
3) \(\hept{\begin{cases}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{cases}}\)
4)\(\hept{\begin{cases}\frac{1}{2}\left(x+2\right)\left(y+3\right)-\frac{1}{2}xy=50\\\frac{1}{2}xy-\frac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{cases}}\)
5)\(\hept{\begin{cases}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{cases}}\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
2) Từ hệ ta có \(\hept{\begin{cases}20x-6y=66\\-3x=-9\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
Giair hệ phương trình
1.\(\hept{\begin{cases}x^2+y^2=5\\\sqrt{y-1}\left(x+y-1\right)=\left(y-2\right)\sqrt{x+y}\end{cases}}\)
2.\(\hept{\begin{cases}y^3+y=x^3+3x^2+4x+2\\\sqrt{1-x^2}-\sqrt{y}=\sqrt{2-y}-1\end{cases}}\)
GIÚP MÌNH VỚI, MÌNH CẦN GẤP LẮM Ạ
Giải hệ phương trình: \(\hept{\begin{cases}y+2\sqrt{x^2+y}=4x+3\\\left(x-3\right)\sqrt{y+4}+\left(y-4\right)\sqrt{x-1+2=0}\end{cases}}\)
sai đề à em ơi ? xem lại pt2 kìa
đây là đề thi vào lớp 10 môn toán thpt chuyên thái bình 2019-2020 ạ
mn giải giúp e vs ạ
giải hệ phương trình
a. \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
b,\(\hept{\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{2x+y}+x-y=2\end{cases}}\)
c,\(\hept{\begin{cases}4\left(x^2+y^2\right)+4xy+\frac{3}{\left(x+y\right)^2}=7\\\end{cases}}\)
Cho đề \(\hept{\begin{cases}2y^2-x^2=1\\2\left(x^3-y\right)=y^3-x\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}2\left(y^2+1\right)-\left(x^2+1\right)=2\\x\left(2x^2+1\right)-y\left(y^2+2\right)=0\end{cases}}\)
đặt \(a=y^2+1,b=x^2+1\)
\(\Leftrightarrow\hept{\begin{cases}2a-b=2\\x\left(2b-1\right)-y\left(a+1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}b=2a-2\\x\left(4a-5\right)-ya-y=0\end{cases}}}\Leftrightarrow\hept{\begin{cases}b=2a-2\\a=\frac{5x+y}{4x-y}\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{2x+4y}{4x-y}\\a=\frac{5x+y}{4x-y}\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}y^2+1=\frac{5x+y}{4x-y}\left(1\right)\\x^2+1=\frac{2x+4y}{4x-y}\left(2\right)\end{cases}}\)
pt(1)-pt(2),ta dc:\(\left(x-y\right)\left(\frac{3}{4x-y}+x+y\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=y\left(3\right)\\\frac{3}{4x-y}+x+y=0\left(4\right)\end{cases}}\)
CM:PT (4) vô nghiệm giúp mình nha!Và xem lại nếu mình có lm sai hay thiếu đk j đó hãy chỉ giúp mình nha!!!Hoặc pt(4) có nghiệm thì hãy giải giúp mình luôn nha!Thanks
GIẢI HỆ PHƯƠNG TRÌNH\(\hept{\begin{cases}x^2+3xy-3\left(x-y\right)=0\\x^4+9y\left(x^2+y\right)-5x^2=0\end{cases}}\)
Hệ pt \(\Leftrightarrow\hept{\begin{cases}x^2+3y=3x-3xy\left(1\right)\\\left(x^2+3y\right)^2+3x^2y-5x^2=0\left(2\right)\end{cases}}\)
Thay (1) vào (2) ta được: \(x^2\left(9y^2-15y+4\right)=0\Leftrightarrow\hept{\begin{cases}x=0\Rightarrow y=0\\y=\frac{1}{3}\Rightarrow x=1\\y=\frac{4}{3}\Rightarrow x^2+x+4=0\left(VN\right)\end{cases}}\)
CÁM ƠN BẠN NHIỀU, NHƯNG MÌNH LÀM ĐƯỢC BÀI NÀY RỒI, CÁM ƠN VÀ XIN LỖI BẠN !
Giải hệ phương trình:
1) \(\hept{\begin{cases}\sqrt[3]{x-y}=\sqrt{x-y}\\x+y=\sqrt{x+y+2}\end{cases}}\)
2) \(\hept{\begin{cases}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{cases}}\)
3) \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{cases}\left(x;y\in R\right)}\)
4) \(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
5) \(\hept{\begin{cases}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{cases}\left(x;y\in R\right)}\)
6) \(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\left(x;y\in R\right)}\)
7) \(\hept{\begin{cases}\left(x^2+1\right)+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}\left(x;y\in R\right)}\)
8) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
Giải hệ phương trình:
1.\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{cases}}\)
2.\(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{cases}}\)
3.\(\hept{\begin{cases}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{cases}}\)
4.\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)
5. \(\hept{\begin{cases}2x^3+3x^2y=5\\y^3+6xy^2=7\end{cases}}\)