Chứng minh
999993^1991x5557^1997 chia hết cho 5
2001^2015-1917^2000 chia hết cho 10
6^100 chia hết cho 5
21^10-11^10 chia hết cho10
1.cho A = 999993^1999 - 555557^1997.chứng minh rằng A chia hết cho 5
2.chứng minh rằng 10^28+8 chia hết cho 72
A= 9999931999 - 5555571997
Chứng minh rằng A chia hết cho 10
Ta đi chứng minh \(A⋮2,A⋮5\)
+) Ta có : \(A=99999^{1999}-555557^{1997}\equiv1-1\equiv0\left(mod2\right)\)
\(\Rightarrow A⋮2\)
Lại có : \(99999\equiv\left(-1\right)\left(mod5\right)\)
\(\Rightarrow99999^{1999}\equiv\left(-1\right)\left(mod5\right)\)
Vì \(555557\equiv2\left(mod5\right)\)
\(\Rightarrow555557^{1997}\equiv2^{1997}\left(mod5\right)\)
Ta thấy rằng : \(2^2=4\equiv\left(-1\right)\left(mod5\right)\)
\(\Rightarrow\left(2^2\right)^{998}\equiv1\left(mod5\right)\)
\(\Rightarrow2^{1996}\equiv1\left(mod5\right)\)
\(\Rightarrow2^{1997}\equiv2\left(mod5\right)\)
Do đó : \(555557^{1997}\equiv2\left(mod5\right)\)
Vậy \(A\equiv\left(-1\right)-2\equiv\left(-3\right)\left(mod5\right)\)
Hum.... đề sai.
Cảm ơn bạn nha nhưng mình nghĩ là đề không sai đâu
Ta có A = 999991999 - 555571997
= (....9)1998 . (....9) - (....7)1996.(....7)
= [(....9)2]999 . (...9) - [(...7)4]499.(...7)
= (....1)999.(....9) - (....1)999.(....7)
= (....9) - (...7) = (...2)
Vì A tận cùng là 2
=> A không chhia hết cho 10
Đề sai rồi bạn ak
Chứng minh:
a) 1110 -1 chia hết cho 100
b) 241917+141917 chia hết cho 19
(Dùng phương pháp đồng dư)
a) Cho A=9999931999-5555571997. chứng minh A chia hết cho 5
b)Biết 2x+3y chia hết cho 17. chứng tỏ rằng 9x+5y chia hết cho 17
b, 2x+3y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17 hay 26x+39y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17 => 26x+39y-17x-34y chia hết cho 17 hay 9x+5y chia hết cho 17
=> ĐPCM
k mk nha
b) Ta có : 2x+3y chia hết cho 17
=> 9(2x+3y) chia hết cho 17
=> 18x+27y chia hết cho 17
Giả sử điều cần chứng minh là đúng thì 9x+5y chia hết cho 17
=> 2(9x+5y) chia hết cho 17
18x+10y chia hết cho 17
=> (18x+27y)-(18x+10y) = 17y chia hết cho 17
Mà 18x+27y chia hết cho 17 nên 18x+10y cũng chia hết cho 17
<=> 9x+5y chia hết cho 17
b) Ta có : 2x+3y chia hết cho 17
=> 9(2x+3y) chia hết cho 17
=> 18x+27y chia hết cho 17
Giả sử điều cần chứng minh là đúng thì 9x+5y chia hết cho 17
=> 2(9x+5y) chia hết cho 17
18x+10y chia hết cho 17
=> (18x+27y)-(18x+10y) = 17y chia hết cho 17
Mà 18x+27y chia hết cho 17 nên 18x+10y cũng chia hết cho 17
<=> 9x+5y chia hết cho 17
1. a, Cho B = 3 + 3^3 + 3^5 +...+ 3^1991. Chứng minh rằng: B chia hết cho 3 ; B chia hết cho 41
b, Chứng minh rằng: (99^5 - 98^4 - 97^3 - 96^3) chia hết cho 2, cho 5.
c, A = 999993^1999 - 555557^1997. Chứng minh: A chia hết cho 5.
d, A = 8n + 111..1 ( n chữ số 1 ). Chứng minh: A chia hết cho 9.
e, Cho ( abc + deg ) chia hết cho 37. Chứng minh: abcd chia hết chio 37.
2. Tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng, còn tích của chúng gấp 192 lần hiệu của chúng.
3. Tìm số nhỏ hơn 100, biết rằng khi chia số đó cho 5 thì được dư là 3, chia cho 11 dư 5.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
Chứng minh rằng
a) 19911997-19971996 chia hết cho 10
b) 29+299 chia hết cho 100
c) 10n+53 chia hết cho 9
d) 4343-1717 chia hết cho 10
Chứng minh A = 999993^1999 . 555557^1997 chia hết cho 5
Chứng minh
a, (10n + 8n + 6n) - (9n + 7n + 5n) chia hết cho 2
b, 2120 - 1110 chia hết cho 2;5
c, 9999932015 - 5555572013 chia hết cho 5 (2)
1. chứng minh: 1993^1999-1997^1997 chia hết cho 5
2. Chứng minh:a, 10^33+8 chia hết cho 18
b, 10^10+14 chia hết cho 6
3. tìm x,y: a, 1x85y chia hết cho 2; 3 và 5
b, 10xy5 chia hết cho 45