Tìm GTNN của \(x+\frac{1}{x};x\ge3\)
1. Tìm GTLN của P=1+\(\frac{1}{x}\)với x≥1
2. Cho x>0, tìm GTNN của P=x+\(\frac{1}{x}\)
3. Cho x>0, tìm GTNN của biểu thức:
\(A=\frac{x^2+x+4}{x+1}\)
4. Cho x>0. Tìm GTNN của P=x2+\(\frac{2}{x}\)
5.Cho x>0. Tìm GTNN của 2x+\(\frac{1}{x^2}\)
6. Tìm GTNN của P=x2-x+\(\frac{1}{x}\)+4 với x>0
7. Cho x≥1. Tìm GTNN của: \(y=\frac{x+2}{x+1}\)
8.Tìm GTLN và GTNN của: \(A=\frac{2x}{x^2+1}\)
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
x=1 nhe nhap minh di ma ket ban voi minh nhe
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
tìm GTNN của A = \(\frac{4y^2-4x^2+6xy}{x^2+y^2}\)
với 0 <x<1 tìm GTNN của C =\(\frac{x}{1-x}+\frac{5}{x}\)
tìm GTLN của D = 3x^2 ( 5 - 3x^2 )
tìm GTNN của : |3x-7|+|3x-2|+8
cho x-y =2 . Tìm GTNN của biểu thức B= |2x+1|=|2y+1|
tìm GTLN của : x+\(\frac{1}{2}\)-|x-\(\frac{2}{3}\)|
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Tìm GTNN và GTNN của biểu thức sau : \(P=\frac{x^2-x+1}{x^2+x+1}\)
dạng bài này bn có thể dùng miền giá trị hàm để tách nhé(cái này chỉ làm nháp thôi)
(Chú ý phương trình bậc 2 :ax2+bx+c=0.Phương trình có \(\Delta=b^2-4ac\)(\(\Delta\)là biệt số Đen-ta)
Nếu \(\Delta\ge0\)thì pt có 2 nghiệm
Nếu \(\Delta< 0\)thì pt vô nghiệm
Bài làm
Gọi m là 1 giá trị của \(\frac{x^2-x+1}{x^2+x+1}\)
Ta có m= \(\frac{x^2-x+1}{x^2+x+1}\)
=>m(x2+x+1)=x2-x+1
=>mx2+mx+m-x2+x-1=0 =>(m-1)x2 +(m+1)x+m-1=0(1)
Nếu m=0..............(th này ko phải xét)
Nếu m\(\ne0\)thì pt (1) có nghiệm khi \(\Delta=b^2-4ac\ge0\)
\(\Leftrightarrow\left(m+1\right)^2-4.\left(m-1\right)\left(m-1\right)\ge0\)
\(\Leftrightarrow m^2+2m+1-4m^2+8m-4\ge0\)
\(\Leftrightarrow-3m^2+10m-3\ge0\)\(\Leftrightarrow3m^2-10m+3\le0\)
\(\Leftrightarrow\left(m-3\right)\left(3m-1\right)\le0\)
=> có 2 TH
TH1: m-3\(\le0\)và\(3m-1\ge0\)
=>\(\hept{\begin{cases}m\le3\\m\ge\frac{1}{3}\end{cases}\Leftrightarrow\frac{1}{3}\le m\le3}\)(t/m)(*)
TH2\(\hept{\begin{cases}m-3\ge0\\3m-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge3\\m\le\frac{1}{3}\end{cases}}}\)(vô lí)(**)
Từ (*),(**) =>\(\frac{1}{3}\le m\le3\)
=>\(\hept{\begin{cases}Min_P=\frac{1}{3}\\Max_P=3\end{cases}}\)
Từ đây bạn tách ngược từ dưới lên.
Nếu ko biết thì nhắn tin cho mk ,mk tách cho
tk mk nha
bài 1:
\(P=\frac{x^2-x}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{x-1}+\frac{2x-2}{x-1}\)
a) Rút gọn
b) tìm GTNN của P
c) Tìm x để \(Q=\frac{2\sqrt{x}}{P}\)có giá trị nguyên
bài 2. \(N=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{2\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Tìm x để N xác định
b) Tìm x để N đạt GTNN tìm GTNN đó
lm mí bài nì rối quá, ai giúp mk vs
Bài 1: Cho x+2y=1. Tìm GTNN của A=x2+2y2
Bài 2: Cho xy=1. Tìm GTNN của B=|x+y|
Bài 3: Tìm GTNN của
a) A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b) B=\(\frac{x^2-4x+1}{x^2}\)
Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b2 )( x2 + Y2 )
Ở đây hệ số của x là 1 nên a là 1.
Ta có: ( x + 2y )2 <= ( 12 + (căn2)2 ) ( x2 + ( căn 2 )2y2 )
=> 1 <= 3 ( x2 + 2y2 )
=> x2 + 2y2 >= 1/3
Cho công thức:\(\frac{a}{b}+\frac{b}{a}\ge2\) với \(ab\ge0\)
Cho x >1.Tìm GTNN của:\(x+\frac{1}{x-1}\)
Cho x >2.Tìm GTNN của:\(\frac{x^2-2x+2}{x+2}\)
Tìm GTNN của \(C=\frac{x}{x-1}+\frac{5}{x}\)
1.Tìm GTNN của \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}\) với x > 0
2. Tìm GTNN của \(B=\frac{\left(x+100\right)^2}{x}\) với x > 0
1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)
Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)
\(\Rightarrow A\ge25\)
Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)
2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)
Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)
\(\Rightarrow B\ge400\)
Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)