Có bao nhiêu cặp số nguyên thỏa mãn \(\frac{x}{8}\)= \(\frac{2}{y}\)= \(\frac{3}{4}\)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Có bao nhiêu cặp số nguyên x, y thỏa mãn đề bài?
Có bao nhiêu cặp số nguyên (x;y) thỏa mãn \(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
là 5
Số các cặp số nguyên (x;y) thỏa mãn \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
\(\Rightarrow x=5:\frac{1-2y}{8}=\frac{40}{1-2y}\)
Do x, y là số nguyên => 40 chia hết cho 1 - 2y
=> 1 - 2y thuộc Ư(40)
Mà 1 - 2y là lẻ => 1 - 2y thuộc {-1; 1; -5; 5}
=> y thuộc {1; 0; 3; -2}
=> x thuộc {-40; 40; -8; 8}
Số các cặp số nguyên (x,y) thỏa mãn \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)là......
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=>x.(1-2y)=5.8=40
=>x và 1-2y là ước của 40
2y là số chẵn =>1-2y là số lẻ =>1-2y là ước lẻ của 40
Ta có bảng sau:
x | 40 | -40 | 8 | -8 |
1-2y | 1 | -1 | 5 | -5 |
suy ra :
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
Vậy.................................................
Số cặp số nguyên (x;y) thỏa mãn :\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
quy đồng lên bỏ mẫu ta có 160+8xy=4x
=> 4x-8xy=160
=4x(1-2y)=160
=x(1-2y)=40
1-2y thuộc Z => đó là số lẻ ước của 40 chỉ có 5 và -5 là số lẻ khỏi cần tính => có 2 cặp
Số các cặp là ( 40 ; 0 ) ; ( 0 ; 40 )
Vì \(\frac{5}{40}+\frac{0}{4}=\frac{1}{8};\frac{5}{0}+\frac{40}{4}=\frac{1}{8}\)
Số các cặp số nguyên thỏa mãn \(\frac{5}{x}-\frac{y}{4}=\frac{1}{8}\)
Có một số cặp số nguyên dương \(\left(x,y\right)\) mà: \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{1}{\sqrt{20}}\)
Hỏi có bao nhiêu cặp x,y thỏa mãn điều kiện trên?
Bài 1
a,So sánh hai số sau \(4^{127}\)và \(81^{43}\)
b, Tìm số nguyên x thỏa mãn \(\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+\frac{3}{10}+...+\frac{3}{x.\left(x+1\right):2}=\frac{2015}{336}\)
Bài 2
Cho phân số \(A=\frac{6n+1}{4n+3}\)(với b nguyên)
a Tìm giá trị n nguyên âm để A có giá trị là số nguyên
b, Tìm giá trị n để A là phân số không rút gọn được
Bài 3
a,Tìm các cặp giá trị x,y nguyên thỏa mãn \(\frac{x}{8}-\frac{2}{2y+3}=\frac{7}{12}\)
b, Cho phép toán * thỏa mãn với hai số tự nhiên a và b ta có a*b= 3a+\(b^a\)Tìm các số nguyên tố x,y sao cho 2*x+y*4-8 cũng là số nguyên tố
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn hệ thức \(y=\frac{1}{x+1}+\frac{8}{x-4}\)