Tìm số dư khi chia 2^100 cho:
a) cho 9
b) cho 25
c) cho 125
tìm số dư khi chia 2^100 cho 125
2^10 đồng dư với 24 (mod 125)
(2^10)^5 đồng dư với 24^5 đồng dư với 124 ( mod 125)
(2^50)^2 đồng dư với 124^2 đồng dư với 1 (mod 125)
Vậy khi chia 2^100 cho 125 thì dư 1
210 = 24 (mod 125)
(210)5 = 245 = 124 (mod 125)
(250)2 = 1242 = 1 (mod 125)
Vậy 2100 chia cho 125 thì dư 1
Tìm số dư khi chia 2^100 cho:
a,9
b,25
c,125
tìm số tự nhiên a nhỏ nhát sao cho:a chia cho 2 dư 1, a chia cho 3 dư 1, a chia cho 5 dư 4, a chia cho 7 dư 3
Cho:A=1+2+22+...+22009+22010
Tìm số dư khi chia A cho 7
\(1+2+2^2+...+2^{2009}+2^{2010}\)
\(1+\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
=\(1+2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
=\(1+\left(2+2^4+...+2^{2008}\right)\left(1+2+2^2\right)\)
=\(1+\left(2+2^4+...+2^{2008}\right)7\)
=>\(1+2+2^2+...+2^{2009}+2^{2010}\) chia cho 7 dư 1
: Tìm số tự nhiên nhỏ nhất sao cho:
a) Khi chia số đó cho 7; cho 10; cho 13 dư theo thứ tự là 4; 5; 6.
b) Khi chia số đó cho 23, 31, 43 dư lần lượt là 12, 20, 26.
giup minh vs minh dg can gapp!!!!!!
Tìm các chữ số a,b sao cho:a, 52ab (là 1 số) chia hết cho 9 chia hết cho 2 và chia 5 dư 4
Chia số tự nhiên a cho 9 được số dư là 4. Chia số tự nhiên b cho 9 được số dư là 5. Chia số tự nhiên c cho 9 được số dư là 8.
a) Chứng tỏ rằng a + b chia hết cho 9
b) Tìm số dư khi chia b + c cho 9
a) Ta có: a chia 9 dư 4 => đặt a =9k+4
b chia 9 dư 5 => đặt b=9t+5
=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9n+8
=> b+c = 9t+5+9n+8 = 9(t+n+1) +4
=> b+c chia 9 dư 4
Câu a: vì tổng của 2 số dư của a+b=9 nên t có : a+b chia hết cho 9 và 4+5 chia hết cho 9 nên suy ra a+b chia hết cho 9 b: dư4
Tìm số tự nhiên a nhỏ nhất sao cho:a chia cho 5 dư 3;a chia cho 7 thì dư 4
lấy 2a chia 5 dư 1 chia 7 dư 1
=> 2a + 1 chia hết cho 5 và 7
=> 2a+1 thuộc BCNN(5;7)
Biết rằng một đa thức f(x) chia hết cho (x-a) khi và chỉ khi f(a)=0. Hãy tìm các giá trị của m, n, k sao cho:
a. Đa thức f(x)=x^3+mx^2+nx+2 chia cho x+1 dư 5, chia cho x+2 dư 8.
b. Đa thức f(x)=x^3+mx+n chia cho x+1 thì dư 7, chia cho x-3 thì dư -5.
c. Đa thức f(x)=mx^3+nx^2+k chia hết cho x+2, chia cho x^2-1 thì dư x+5.
a) Ta có f(x) - 5 \(⋮\)x + 1
=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1
=> x3 + mx2 + nx - 3 \(⋮\)x + 1
=> x = - 1 là nghiệm đa thức
Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0
<=> m - n = 4 (1)
Tương tự ta được f(x) - 8 \(⋮\)x + 2
=> x3 + mx2 + nx - 6 \(⋮\) x + 2
=> x = -2 là nghiệm đa thức
=> (-2)3 + m(-2)2 + n(-2) - 6 = 0
<=> 2m - n = 7 (2)
Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)
Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2
b) f(x) - 7 \(⋮\)x + 1
=> x3 + mx + n - 7 \(⋮\) x + 1
=> x = -1 là nghiệm đa thức
=> (-1)3 + m(-1) + n - 7 = 0
<=> -m + n = 8 (1)
Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3
=> x = 3 là nghiệm đa thức
=> 33 + 3m + n + 5 = 0
<=> 3m + n = -32 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)
Vậy f(x) = x3 - 10x -2