Cho A=3^0 +3^1 + 3^2 +3^3+.....+ 3^2008 và B = 3^2009
Chứng tỏ rằng 2A và B là 2 số liên tiếp
cho \(A=3^0+3^1+3^2+...+3^{2008}\)
\(B=3^{2008}\)
chứng tỏ 2A và B là 2 sốnguyên liên tiếp
Sửa \(A=3^0+3^1+3^2+......+3^{2007}\)
\(3A=3^1+3^2+......+3^{2008}\)
\(3A-A=\left(3^1+3^2+.....+3^{2008}\right)-\left(3^0+3^1+....+3^{2007}\right)\)
\(2A=3^{2008}-1\)
Có : \(2A=3^{2008}-1\)
\(B=3^{2008}\)
=> 2A , B là 2 số ........................
Sai đề rồi bạn nhé
Mình nghĩ B = \(3^{2009}\)cơ
Đây nhé
2A = 3A - A = \(3\left(3^0+3^1+3^2+....+3^{2008}\right)\)-\(\left(3^0+3^1+3^2+....+3^{2008}\right)\)
=\(3+3^2+3^3+.....+3^{2009}\)\(-3^0-3-3^2-....-3^{2008}\)
=\(3^{2009}-3^0\)
=\(3^{2009}-1\)=> 2A = \(3^{2009}-1\)
Vậy 2A ít hơn B 1 đơn vị ( vì B = \(3^{2009}\)nhé)
Vậy 2A và B là 2 số tự nhiên liên tiếp
\(A=3^0+3^1+3^2+...+3^{2008}\)
\(3A=3^1+3^2+3^3+...+3^{2009}\)
\(3A-A=3^{2009}-1\)
\(2A=3^{2009}-1\)
Đến đây mik không biết làm sao nữa
Cho :
A = 30 +31 + 32 + ... + 32008
B = 32009
Chứng tỏ : 2A và B là hai số liên tiếp
A=1+3^1+3^2+...+3^2008
3A=3(1+3^1+3^2+...+3^2008)
3A=3*1+3*3^1+3*3^2+...+3*3^2008
3A=3+3^2+3^3+...+3^2009
3A-A=(3+3^2+3^3+...+3^2009)-(1+3^1+3^2+...+3^2008)
A=(3^2009-1):2
=>2A=(3^2009-1):2
<=>A=3^2009-1
vi 2 so lien tiep hon kem nhau 1 don vi
=>3^2009-1 va 3^2009 la 2 so lien tiep
=>2A va B la 2 so tu nhien lien tiep
Cho A= 3^0+3^1+3^2+...+3^2018 và B = 3 chứng tỏ 2A và B là 2 số nguyên liên tiếp.
Mn giúp mik nha!\(A=3^0+3^1+3^2+...+3^{2018}\)
\(3A=3^1+3^2+3^3+...+3^{2018}+3^{2019}\)
\(\Rightarrow3A-A=\left(3^1+3^2+...+3^{2019}\right)-\left(3^0+3^1+...+3^{2018}\right)\)
\(2A=3^{2019}-3^0=3^{2019}-1\)
Cho A = 3^0 +3^1+.....+3^2008 và B=3^2009
CMR: 2.A và B là 2 số nguyên liên tiếp
cho 3 số a,b,c # 0 thỏa mãn 2 điều kiện sau :a+b+c=2008 và 1/a + 1/b + 1/c = 1/2008. chứng tỏ rằng một trong 3 số bằng 2008
vì a+b+c = 2008 và 1/a + 1/b + 1/c = 1/2008 => 1/a + 1/ b + 1/c = 1/ (a+b+c)
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)=abc\)
=>(a+b+c)(bc+ac+ab) - abc = 0
=> abc + a(ac+ab) + (b+c)(bc+ac+ab) - abc = 0
=> a2(b+c) + (b+c)(bc+ac+ab) = 0 => (b+c)(a2 + bc + ac + ab) = 0 => (b+c)[a(a+c) + b(a+c)] = 0
=> (b+c)(a+b)(a+c) = 0 => b+c = 0 hoặc a+b = 0 hoặc a+c = 0
Nếu b+c = 0 => a = 2008
nếu a+ b = 0 => c = 2008
Nếu a+c = 0 => b = 2008
Vậy....
Trần Thị Loan : tại sao a+b+c = 2008 và 1/a+1/b+1/c = 1/2008 lại => 1/z+1/v+1/c = 1/(a+b+c) ????
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2008};a+b+c=2008\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc+ca+ac}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(bc+ca+ac\right)\left(a+b+c\right)=abc\)
\(\Rightarrow\left(bc+ca+ac\right)\left(a+b+c\right)-abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Nếu \(a+b=0\Rightarrow c=2008\)
\(b+c=0\Rightarrow a=2008\)
\(c+a=0\Rightarrow b=2008\)
Vậy 1 trong ba số bằng 2008
a)chứng tỏ rằng tổng của tất cả các số có 3 chũ số là 1 số vừa chia hết 2 và 5
B)chứng tỏ rằng tích 3 chữ số tự nhiên liên tiếp luôn chia hết cho 2 và 3
a) Vì tổng tận cùng là 0 nên chia hết cho 2;5
b) Vì ba số tự nhiên liên tiếp luôn luôn có số chẵn ba số tự nhiên liên tiếp luôn luôn có 1 số chia hết cho 3
nên chia hết cho 2 ;3
Tích đúng nha
Bài 1:
a/ Chứng tỏ rằng số 111222 là tích của 2 số tự nhiên liên tiếp.
b/ Chứng tỏ rằng số 444222 là tích của 2 số tự nhiên liên tiếp.
c/ Chứng tỏ rằng số 11...122...2 là tích của 2 số tự nhiên liên tiếp.
Bài 2:
Cho 9 số xếp vào 9 ô thành 1 hàng ngang,trong đó số đầu tiên là 4,số cuối cùng là 8 và tổng 3 số liền nhau bất kì bằng 17.Hãy tìm 9 số đó.
Bài 3:
Viết liên tiếp các số tự nhiên từ 1 đến 1000 ta được số A=1234...9989991000.
a/ Chữ số 5 xuất hiện mấy lần?
b/ Chữ số 0 xuất hiện mấy lần?
Bài 4: Tính:
333...3 x 999...9 có 20 số 3; 20 số 9.
a la Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều.
Bấm máy tính, ta có:
12 = 3.4
1122 = 33.34
111222 = 333.334
11112222 = 3333.3334
....
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh:
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1)
=333.334 (đpcm)
minh nghi cac ban deu lam dung roi day
Chứng tỏ rằng:
a) Trong 2 số tự nhiên liên tiếp có 1 chữ số chia hết cho 2
b)Trong 3 số tự nhiên liên tiếp có 1 chữ số chia hết cho 2
c)Tổng 3 số tự nhiên liên tiếp là số chia hết cho 3
d)Tổng 4 số tự nhiên liên tiếp không chia hết cho 3
Tìm xong và tính kết quả
a, hai số tự nhiên liên tiếp có 1 số chẵn và 1 số lẻ nên chắc chắn số chẵn chia hết cho 2
c, gọi 3 số tự nhiên liên tiếp là n , n+1 , n+2
ta có n+n+1+n+2 = 3n+3 chia hết cho 3
còn câu d bn làm tương tự ok