Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Họ Và Tên
Xem chi tiết
ninja(team GP)
17 tháng 10 2020 lúc 12:35

qua hoidap247

Khách vãng lai đã xóa
Nguyễn Minh Đăng
17 tháng 10 2020 lúc 12:37

Ta có:

\(H=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{\frac{1}{x^2}}{x\left(y+z\right)}+\frac{\frac{1}{y^2}}{y\left(z+x\right)}+\frac{\frac{1}{z^2}}{z\left(x+y\right)}\)

\(=\frac{\left(\frac{1}{x}\right)^2}{xy+zx}+\frac{\left(\frac{1}{y}\right)^2}{yz+xy}+\frac{\left(\frac{1}{z}\right)^2}{zx+yz}\)

Áp dụng BĐT Bunyakovsky dạng cộng mẫu ta được:

\(H\ge\frac{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(\frac{xy+yz+zx}{xyz}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}\)

\(=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: x = y = z = 1

Vậy Min(H) = 3/2 khi x = y = z = 1

Khách vãng lai đã xóa
Nguyen Duy Dai
Xem chi tiết
Phan Nghĩa
15 tháng 8 2020 lúc 15:47

dễ mà bạn :))) gáy tí , sai thì thôi

\(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)

\(=\frac{x^3\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}+\frac{y^3\left(1+x\right)}{\left(1+y\right)\left(1+x\right)\left(1+z\right)}+\frac{z^3\left(1+y\right)}{\left(1+x\right)\left(1+z\right)\left(1+y\right)}\)

\(=\frac{x^3\left(1+z\right)+y^3\left(1+x\right)+z^3\left(1+y\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{3\sqrt[3]{x^3y^3z^3\left(1+x\right)\left(1+y\right)\left(1+z\right)}}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

đến đây áp dụng BĐT phụ ( 1+a ) ( 1+b ) ( 1+c ) >= 8abc 

EZ :)))

Khách vãng lai đã xóa
Nguyen Duy Dai
15 tháng 8 2020 lúc 15:50

nhưng làm thế thì ko bảo toàn đc dấu bất đẳng thức mà

Khách vãng lai đã xóa
FL.Hermit
15 tháng 8 2020 lúc 15:53

TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ VÀO TỪNG BDT SAU SẼ ĐƯỢC: 

Có:    \(\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge3\sqrt[3]{\frac{x^3\left(1+x\right)\left(1+y\right)}{64\left(1+x\right)\left(1+y\right)}}\)

=>      \(\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge\frac{3x}{4}\)

CMTT TA CŨNG SẼ ĐƯỢC:    \(\hept{\begin{cases}\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(1+z\right)\left(1+x\right)}+\frac{1+z}{8}+\frac{1+x}{8}\ge\frac{3z}{4}\end{cases}}\)

=> TA CỘNG TỪNG VẾ 3 BĐT ĐÓ LẠI SẼ ĐƯỢC:   

\(\Rightarrow P+\frac{1+x}{4}+\frac{1+y}{4}+\frac{1+z}{4}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P+\frac{x+y+z+3}{4}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)-3}{4}\)

TA LẠI ÁP DỤNG BĐT CAUCHY 3 SỐ 1 LẦN NỮA SẼ ĐƯỢC: 

\(\Rightarrow P\ge\frac{2.3\sqrt[3]{xyz}-3}{4}\)

\(\Rightarrow P\ge\frac{2.3-3}{4}=\frac{6-3}{4}=\frac{3}{4}\)      (DO \(xyz=1\))

DẤU "=" XẢY RA <=>    \(x=y=z\)

MÀ:     \(xyz=1\Rightarrow x=y=z=1\)

VẬY P MIN    \(=\frac{3}{4}\Leftrightarrow x=y=z=1\)

Khách vãng lai đã xóa
Cố gắng hơn nữa
Xem chi tiết
Thắng Nguyễn
13 tháng 5 2018 lúc 22:59

nhân VT ra rồi dùng cô si là ra 

Cố gắng hơn nữa
13 tháng 5 2018 lúc 23:08

ở nhở :v bị ngáo nhập :v

Cố gắng hơn nữa
14 tháng 5 2018 lúc 12:53

cơ mà hình như k được

Lê Văn Hoàng
Xem chi tiết
Nguyễn Thiều Công Thành
20 tháng 8 2017 lúc 22:00

đặt \(P=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{yz}{x^2\left(y+z\right)}+\frac{zx}{y^2\left(z+x\right)}+\frac{xy}{z^2\left(x+y\right)}\)

áp dụng bất đẳng thức cô si ta có:

\(\frac{yz}{x^2\left(y+z\right)}+\frac{y+z}{4yz}\ge\frac{1}{x};\frac{zx}{y^2\left(z+x\right)}+\frac{z+x}{4zx}\ge\frac{1}{y};\frac{xy}{z^2\left(x+y\right)}+\frac{x+y}{4xy}\ge\frac{1}{z}\)

\(\Rightarrow P+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{2}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=\frac{3}{2}\left(Q.E.D\right)\)

dấu bằng xảy ra khi x=y=z=1

Thành Bình
Xem chi tiết
Võ Trà Giang
Xem chi tiết
Tiểu Linh
29 tháng 8 2017 lúc 19:32

cha ôi rk mà cx ko bt

lưu hoàng hiệp
3 tháng 10 2017 lúc 20:43

khó vcl

Nguyễn Lâm Ngọc
3 tháng 10 2017 lúc 20:45

Cái này làm theo Bunhiacopski.

Lê Như Lam
Xem chi tiết
Giao Khánh Linh
Xem chi tiết
alibaba nguyễn
6 tháng 12 2019 lúc 9:30

\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{y^2z^2}{x\left(y+z\right)}+\frac{z^2x^2}{y\left(z+x\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)

\(\ge\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

Khách vãng lai đã xóa
Nguyen Duy Dai
Xem chi tiết
Phan Nghĩa
15 tháng 8 2020 lúc 9:37

dùng bunhia cho phần mẫu số là ra 

Khách vãng lai đã xóa
Hoàng Bảo Trân
Xem chi tiết
ST
9 tháng 11 2018 lúc 13:45

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{3}{x^2y}+\frac{3}{xy^2}+\frac{1}{y^3}=\frac{-1}{z^3}\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{-1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}-\frac{3}{xyz}=-\frac{1}{z^3}\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Thay vào A ta đc: \(A=xyz\cdot\frac{3}{xyz}=3\)