giả xử x=a/m, y=b/m(a,b,m thuộc z, m>0)và x<y.hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y.
giả xử x=a/m, y=b/m(a,b,m thuộc z, m>0)và x<y.hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y.
x =a/m =>. x = 2a/2m
y =b/m => y = 2b/2m
z = (a+b)/2m
theo giả thiết a < b => a + b < b + b => a + b < 2b ........(1)
Ngòa i ra, a < b => a + a < a + b => 2a < a + b ........(2)
Suy ra:
2a < a +b < 2b
Suy ra (chia 2 vế cho 2m) :
2a/2m < (a +b)/2m < 2b
R út gọn ta được : x < z <y
giả xử \(x=\frac{a}{m}\) , \(y=\frac{b}{m}\) (a,b,m thuộc Z, m>0) và x < y. Hãy chứng tỏ rằng nếu chọn \(z=\frac{a+b}{2m}\) thì ta có x<z<y.
C1:
Ta có: \(x=\frac{a}{m}=\frac{2a}{2m}\) và \(y=\frac{b}{m}=\frac{2b}{2m}\)
Vì x<y nên a<b
Vì 2a< a+b< 2b
=> \(\frac{2a}{2m}
Giả sử x= a/m, y= b/m(a,b,m thuộc Z,m>0) và x<y.CMR nếu chọn z=a+b/2m thì x<z<y
Giả sử x = a/m ; y = b/m (a,b,m thuộc z, m>0) và x <y . hãy chứng tỏ rằng x<z<y với z= a+b/2m
Giả xử \(x=\frac{a}{m}\)
\(y=\frac{b}{m}\)
( a,b,m thuộc z/ m>0) và x<y.Chứng tỏ nếu chọn \(z=\frac{a+b}{2m}\) thì x<z<y
m>0 và x<y nên a<b Do đó \(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}
Giả sử x=a/m; y=b/m (a;b;m thuộc Z;m khác 0 ) và x<y. CMR nếu chọn z=a+b/2m thì ta có x<z<y
Giả sử x=a/m; y=b/m (a;b;m thuộc Z;m khác 0 ) và x<y. CMR nếu chọn z=a+b/2m thì ta có x<z<y
x=a/m;y=b/m;x<y nên a<b
nên a+a<a+b
nên 2a/2m<a+b
nên x<z
tương tự có z<y
do đó x<z<y
Giả sử x = a/m , y = b/m ( a,b,m thuộc Z, m > 0 ) và x < y. Hãy chứng tỏ rằng nếu chọn z = a+b/m thì ta có x < z < y
theo đề bài ta có :
\(x=\frac{a}{m}\); \(y=\frac{b}{m}\)( a,b,m \(\in\)Z , m > 0 )
vì x < y \(\Leftrightarrow\)\(\frac{a}{m}< \frac{b}{m}\)
\(\Rightarrow a< b\Rightarrow a+a< b+a\Rightarrow2a< a+b\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\left(1\right)\)
Vì a < b \(\Rightarrow\)a + b < b + c
\(\Rightarrow a+b< 2b\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(x< z< y\)
Theo bài ra ta có \(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{2m}< \frac{b}{2m}\)
\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\) (1)
Từ x < y, ta lại có \(\frac{a}{2m}< \frac{b}{2m}\Rightarrow\frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\) (2)
Từ (1) và (2) suy ra đpcm
Giả sử x= a/m, y=b/m (a,b,m thuộc Z; m>0) và x<y. Hãy chứng tỏ z=a+b/m thì x<z<y