Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Thanh Bảo An
Xem chi tiết
Nguyễn Tất Đạt
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Thắng Nguyễn
15 tháng 1 2018 lúc 19:00

C.hóa \(x+y=1\) và dùng C-S:

\(VT^2\le\frac{2x}{\left(y+1\right)^2}+\frac{2y}{\left(x+1\right)^2}\le\frac{8}{9}=VP^2\)

\(BDT\Leftrightarrow\frac{x}{\left(2-x\right)^2}+\frac{y}{\left(2-y\right)^2}\le\frac{4}{9}\left(1\right)\)

Ta có BĐT phụ \(\frac{x}{\left(2-x\right)^2}\le\frac{20}{27}x-\frac{4}{27}\)

\(\Leftrightarrow-\frac{\left(2x-1\right)^2\left(5x-16\right)}{27\left(x-2\right)^2}\le0\) *Đúng*

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT_{\left(1\right)}\le\frac{20}{27}\left(x+y\right)-\frac{4}{27}\cdot2=\frac{4}{9}=VP_{\left(1\right)}\)

"=" khi \(x=y=\frac{1}{2}\)

Sagittarus
Xem chi tiết
ღ₣ąкë ₤๏νëღ
2 tháng 10 2019 lúc 22:46

chứng minh rằng với mọi x,y Q ta luôn có: |x+y||x|+|y|

Xem chi tiết
ngonhuminh
2 tháng 3 2018 lúc 22:09

༺ ๖ۣۜPhạm ✌Tuấn ✌Kiệτ ༻Tâm đường tròn ở đâu

Lâm Tố Như
Xem chi tiết
Akai Haruma
17 tháng 3 2021 lúc 17:56

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/voi-0-xy-dfrac12-chung-minhdfracsqrtxy1dfracsqrtyx1-dfrac2sqrt23.461470553384

Nguyễn Thị Sao Mai
Xem chi tiết
Ngu Ngu Ngu
21 tháng 4 2017 lúc 20:54

Xét \(\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)\)

\(=x^{2011}\left(x-1\right)+y^{2011}\left(y-1\right)\)

\(=x^{2011}\left(1-y\right)+y^{2011}\left(y-1\right)\) (do \(x-1=1-y\))

\(\Leftrightarrow\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)=\left(1-y\right)\left(x^{2011}-y^{2011}\right)\)

+ Giả sử \(x\ge y\Rightarrow x^{2011}\ge y^{2011}\) và \(x\ge1\ge y\)

Do đó \(\left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0\) (Đpcm)

+ Tương tự nếu \(y\ge x\Rightarrow y^{2011}\ge x^{2011}\) và \(y\ge1\ge x\)

Do đó \(\left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0\) (Đpcm)

Dấu "=" xảy ra khi \(x=y=1\)

Nguyễn Minh Quyết
27 tháng 12 2022 lúc 22:30

Xét \left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)

=x^{2011}\left(x-1\right)+y^{2011}\left(y-1\right)

=x^{2011}\left(1-y\right)+y^{2011}\left(y-1\right) (do x-1=1-y)

\Leftrightarrow\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)=\left(1-y\right)\left(x^{2011}-y^{2011}\right)

+ Giả sử x\ge y\Rightarrow x^{2011}\ge y^{2011} và x\ge1\ge y

Do đó \left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0 (Đpcm)

+ Tương tự nếu y\ge x\Rightarrow y^{2011}\ge x^{2011} và y\ge1\ge x

Do đó \left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0 (Đpcm)

Dấu "=" xảy ra khi x=y=1

 

chiến
Xem chi tiết
Huỳnh Ngọc Lộc
Xem chi tiết
Phạm Bình Minh
12 tháng 2 2018 lúc 15:43

a) Với mọi x,y∈Q, ta luôn luôn có:

x ≤ |x|− x ≤ |x| ; y ≤ |y|− y <_|y|

Suy ra x+y ≤ |x|+|y|−x−y ≤ |x|+|y|

hay x+y≥ − (|x|+|y|) x + y

Do đó −(|x|+|y|) ≤ x+y ≤|x|+|y|

Vậy |x+y| ≤ |x|+|y|