Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Thị Mai Lương
Xem chi tiết
Vũ nhã hân
Xem chi tiết
Nguyễn Thị Bích Phương
Xem chi tiết
Do Cao
24 tháng 3 2018 lúc 5:57

Tra lời:

Ta có:

1/101➢1/300+1/102➢1/300+1/103➢1/300+1/104➢1/300+.....+1/299➢1/300

=1/101+1/102+1/103+...1/299➢199/300

=1/101+1/102+1/103+...1/299+1/300➢199/300+1/300

=200/300=2/3.

Note: ➢ là dau lớn do nhe. Nho tick cho minh nha😊😉

Tay súng cừ khôi
Xem chi tiết
Tamako cute
28 tháng 6 2016 lúc 9:58

\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\). . . . \(+\)\(\frac{1}{299}\)\(+\)\(\frac{1}{300}\)\(\ge\)\(\frac{2}{3}\)\(\ge\)\(\frac{1}{300}\)\(+\)\(\frac{1}{300}\)\(+\)\(\frac{1}{300}\)\(=\)\(\frac{200}{300}\)\(=\)\(\frac{2}{3}\)

do \(\frac{1}{101}\)..... \(\frac{1}{300}\)có 200 số

\(\Rightarrow\)\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\)..... \(+\)\(\frac{1}{299}\)\(+\)\(\frac{1}{300}\)\(\ge\)\(\frac{1}{300}\)\(\times\)200

\(\ge\)\(\frac{2}{3}\)

Nguyễn sỹ an
Xem chi tiết
Vũ Trọng Phú
27 tháng 4 2019 lúc 15:05

Chứng minh 1/101 + 1/102 + ... + 1/299 + 1/300 > 2/3
Ta có:
1/101>1/300
1/102>1/300
.....
1/299>1/300
=>VT>200.1/300=200/300=2/3(dpcm)

Vũ Trọng Phú
27 tháng 4 2019 lúc 15:06

Chứng minh 1/101 + 1/102 + ... + 1/299 + 1/300 > 2/3
Ta có: 1/101> 1/300; 1/102> 1/300; .....; 1/300= 1/300
1/101 + 1/102 + ... + 1/299 + 1/300 > 1/300+ 1/300+ .........+1/300= 200/300= 2/3
Vậy 1/101 + 1/102 + ... + 1/299 + 1/300 > 2/3 (dpcm)

βєsէ Ňαkɾσtɦ
Xem chi tiết
thắng
2 tháng 5 2020 lúc 20:06

S=\(\left(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{110}\right)\)  + \(\left(\frac{1}{111}+...+\frac{1}{120}\right)\) + \(\left(\frac{1}{121}+...+\frac{1}{130}\right)\)

\(\frac{1}{110}.10+\frac{1}{120}.10+\frac{1}{130.10}=\)\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}\)\(\frac{1}{12}+\frac{2}{12}=\frac{1}{4}\) ( TA CÓ:\(\frac{1}{11}+\frac{1}{13}>\frac{2}{12}\))

\(\Rightarrow S>\frac{1}{4}\)(1)

+)S=\(\left(\frac{1}{101}+\frac{1}{130}\right)+\left(\frac{1}{102}+\frac{1}{129}\right)+...+\) \(\left(\frac{1}{115}+\frac{1}{116}\right)\) (CÓ 15 Cặp)

=\(\left(\frac{231}{101.130}\right)+\left(\frac{231}{102.129}\right)+...+\)\(\left(\frac{231}{115.116}\right)\)=\(231.\left(\frac{1}{101.130}+\frac{1}{102.129}+...+\frac{1}{115.116}\right)\)

ta xét: tích 101.130 có giá trị nhỏ nhất,nên :

xét 101.129=(101+1).(101-1)=101.130-101+130-1=101.130+28>101.130

tương tự các cặp còn lại, vậy ta có:\(\frac{1}{101.130}+\frac{1}{120.129}+...+\frac{1}{115.116}< \frac{1}{101.130}.15\)

\(\Rightarrow S< 231.\frac{1}{101.130}.15=\frac{693}{2626}< \frac{91}{330}\left(2\right)\)

từ (1)và(2) \(\Rightarrow\)điều phải chứng  minh

Khách vãng lai đã xóa
βєsէ Ňαkɾσtɦ
19 tháng 6 2020 lúc 21:00

THANKS

Khách vãng lai đã xóa
Đặng Bình Giang
Xem chi tiết
Nhật Hạ
7 tháng 5 2019 lúc 20:22

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)

Biểu thức có 200 số hạng

Ta có: \(\frac{1}{101}>\frac{1}{300};\frac{1}{102}>\frac{1}{300};...;\frac{1}{299}>\frac{1}{300};\frac{1}{300}=\frac{1}{300}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}=\frac{200}{300}=\frac{2}{3}\)

Vậy....

Trần Nhật Dương
7 tháng 5 2019 lúc 20:29

Ta có : \(\frac{1}{101}>\frac{1}{300}\)

            \(\frac{1}{102}>\frac{1}{300}\)

              ..................

              \(\frac{1}{300}=\frac{1}{300}\)

Do đó \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}>\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\)

Hay     \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>200\cdot\frac{1}{300}=\frac{2}{3}\Rightarrowđpcm\)

Alpha bot
Xem chi tiết

Ta có:

\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}+\dfrac{1}{201}+\dfrac{1}{202}+...+\dfrac{1}{300}\)

Do: \(\dfrac{1}{101}< \dfrac{1}{100}\)\(\dfrac{1}{102}< \dfrac{1}{100}\); ...; \(\dfrac{1}{200}< \dfrac{1}{100}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{100}{100}=1\) (1)

Lại có:

\(\dfrac{1}{201}< \dfrac{1}{200}\) ; \(\dfrac{1}{202}< \dfrac{1}{200}\) ;...;\(\dfrac{1}{300}< \dfrac{1}{200}\)

\(\Rightarrow\dfrac{1}{201}+\dfrac{1}{202}+...+\dfrac{1}{300}< \dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)

\(\Rightarrow\dfrac{1}{201}+\dfrac{1}{202}+...+\dfrac{1}{300}< \dfrac{100}{200}=\dfrac{1}{2}\) (2)

Từ (1);(2) \(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{300}< 1+\dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{3}{2}\)

Haibara Ail
Xem chi tiết
nguyen duc thang
15 tháng 3 2018 lúc 21:28

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)( có 200 số )

Ta có

\(\frac{1}{101}>\frac{1}{300}\)\(\frac{1}{102}>\frac{1}{300}\); ...;\(\frac{1}{299}>\frac{1}{300}\)

=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)\(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}+\frac{1}{300}\)

=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)\(\frac{1}{300}.200\)

=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)\(\frac{2}{3}\)( dpcm )

Nguyễn Quang Đức
15 tháng 3 2018 lúc 21:23

Ta có\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>200.\frac{1}{300}=\frac{200}{300}=\frac{2}{3}\Rightarrowđpcm\)

Dương Lam Hàng
15 tháng 3 2018 lúc 21:24

Ta có: \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}>\frac{1}{300}.200=\frac{200}{300}=\frac{2}{3}\)

Vậy \(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{300}>\frac{2}{3}\)