Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lethienduc
Xem chi tiết
zZz Cool Kid_new zZz
30 tháng 6 2020 lúc 23:11

Theo đánh giá bởi Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+a+a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng lại ta được:

\(T\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+2a+2b+2c\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a+b+c\)

Mà \(LHS\ge abc\left(a+b+c\right)=a+b+c\Rightarrow T\le1\)

Đẳng thức xảy ra tại a=b=c=1

Khách vãng lai đã xóa
nguyễn thị ngọc trâm
Xem chi tiết
Trần Chí Phèo 123
17 tháng 8 2016 lúc 20:33

ko biet lam

nguyễn thị ngọc trâm
17 tháng 8 2016 lúc 20:36

bạn khá thông minh 

nhưg sorry mình k thể k cho bb đc nha

trần xuân quyến
Xem chi tiết
Lầy Văn Lội
31 tháng 3 2018 lúc 21:09

\(b^4+c^4\ge bc\left(b^2+c^2\right)\)vì \(\left(b-c\right)^2\left(b^2+bc+c^2\right)\ge0\)

\(\Rightarrow T\le\frac{a}{\frac{b^2+c^2}{a}+a}+\frac{b}{\frac{a^2+c^2}{b}+b}+\frac{c}{\frac{a^2+b^2}{c}+c}=1\)

trần xuân quyến
1 tháng 4 2018 lúc 20:38

rõ đi bạn

Phùng Gia Bảo
Xem chi tiết
Kiệt Nguyễn
25 tháng 4 2020 lúc 15:21

Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)

Với x,y dương ta có 2 bất đẳng thức phụ sau:

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)

Áp dụng (*) và (**), ta có:

\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)

\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)

Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)

\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)

Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:

\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))

Đẳng thức xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Kiệt Nguyễn
25 tháng 4 2020 lúc 15:26

Bạn bổ sung cho mình dòng cuối là a = b = c = 1 nhé!

Khách vãng lai đã xóa
pham trung thanh
Xem chi tiết
Tuyển Trần Thị
13 tháng 11 2017 lúc 13:53

\(b^4+c^4\ge\)\(b^3c+bc^3\) (bn tu cm nhé)

\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a}{bc\left(b^2+c^2\right)+a}=\frac{abc}{b^2c^2\left(b^2+c^2\right)+abc}=\frac{1}{b^2c^2\left(b^2+c^2\right)+1}=\)

\(\frac{a^2b^2c^2}{b^2c^2\left(b^2+c^2\right)+a^2b^2c^2}=\frac{a^2b^2c^2}{b^2c^2\left(a^2+b^2+c^2\right)}=\frac{a^2}{a^2+b^2+c^2}\)

ttu \(T\le\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) dau = xay ra khi va chi khi a=b=c=1

Trí Tiên亗
9 tháng 8 2020 lúc 8:00

\(\Sigma\frac{a}{c^4+b^4+a}\le\Sigma\frac{a^2}{abc\left(c^2+b^2\right)+a^2}=1\)

Khách vãng lai đã xóa
Trí Tiên亗
9 tháng 8 2020 lúc 8:24

Bài trên quên xử lý dấu = thêm vào nha  ( dấu "=" xảy ra khi và chỉ khi a=b=c=1 )

C2: Áp dụng bất đẳng thức Cosi ta có 

\(\left(b^4+c^4+a\right)\left(1+1+a^3\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\frac{a}{\left(b^4+c^4+a\right)}\le\frac{a\left(a^4+2\right)}{\left(\Sigma a^2\right)^2}\)

Tương tự, rồi cộng lại ta có 

\(T\le\Sigma\frac{a^4+2}{\left(\Sigma a^2\right)^2}=\frac{\Sigma a^4+2a}{\left(\Sigma a^2\right)^2}\)(*)

Mặt khác ta lại có 

\(\Sigma\frac{1}{a^2}\ge\frac{1}{ab}\)

\(\Leftrightarrow\Sigma a^2b^2\ge\Sigma a\)

\(\Leftrightarrow2\Sigma a^2b^2\ge2\Sigma a\)

\(\Leftrightarrow\Sigma a^4+2\Sigma a^2b^2\ge\Sigma a^4+2\Sigma a\)

\(\Leftrightarrow\frac{\Sigma a^4+2a}{\left(\Sigma a^2\right)^2}\le1\)(**)

từ * và ** 

\(\Rightarrow T\le1\)

dấu ''='' xảy ra khi \(a=b=c=1\)

vậy \(MaxT=1\Leftrightarrow a=b=c=1\)

Khách vãng lai đã xóa
huy nguyễn phương
Xem chi tiết
Mon Đô Rê
11 tháng 11 2018 lúc 9:59

giỏi thì làm bài nÀY nèk

chứ mấy bác cứ đăng linh ta linh tinh lên online math

huy nguyễn phương
11 tháng 11 2018 lúc 10:21

Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ

đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh

Mon Đô Rê
16 tháng 11 2018 lúc 21:24

bạn hiểu nhầm rồi mình bảo mấy cái thằng nó cứ đăng vớ vẩn nên bảo cái bọn đấy làm bài này của bạn đó mà

Vũ Thị Diệp
Xem chi tiết
Đoàn Đức Hà
22 tháng 2 2022 lúc 16:32

\(P=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{\left(1+1+2\right)^2}{a+b+c}=4\)

Suy ra \(minP=4\).

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}=\frac{2}{c}\\a+b+c=4\\a,b,c>0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=1\\c=2\end{cases}}\).

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Đặng Ngọc Quỳnh
1 tháng 1 2021 lúc 10:18

Đặt bđt là (*)

Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :

\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)

\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)

Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)

Hay \(n\le2\)

Với n=2 . Thay vào (*) : ta cần CM BĐT 

\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)

Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Tương tự ta có:

\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)

Ta cần CM: 

\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)

=> đpcm

Dấu '=' xảy ra khi a=b=c

=> số nguyên dương lớn nhất : n=2( thỏa mãn)

Khách vãng lai đã xóa
Lê Nam Hải
Xem chi tiết
nub
8 tháng 7 2020 lúc 16:22

\(b^4+c^4-bc\left(b^2+c^2\right)=\left(b^2+bc+c^2\right)\left(b-c\right)^2\)

\(\Rightarrow b^4+c^4\ge bc\left(b^2+c^2\right)\)

Tương tự\(\Rightarrow\Sigma_{cyc}\frac{a}{a+b^4+c^4}\le\Sigma_{cyc}\frac{a}{a+bc\left(b^2+c^2\right)}=\Sigma_{cyc}\frac{a}{bc\left(a^2+b^2+c^2\right)}=\frac{1}{a^2+b^2+c^2}\Sigma_{cyc}\frac{a}{bc}\)

\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=a^2+b^2+c^2\)

\(\Rightarrow\frac{1}{a^2+b^2+c^2}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)=1\)

oke rồi he

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
8 tháng 7 2020 lúc 21:48

@Nub :v

Áp dụng Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+2a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự:

\(\frac{b}{a^4+c^4+b}\le\frac{b^4+2b}{\left(a^2+b^2+c^2\right)^2};\frac{c}{a^4+b^4+c}\le\frac{c^4+2c}{\left(a^2+b^2+c^2\right)^2}\)

Cộng lại:

\(A\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Cái này luôn  đúng theo Cauchy

Đẳng thức xảy ra tại a=b=c=1

Khách vãng lai đã xóa