Tìm x, y, z biết:
\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+z+y\) nhanh lên tớ tick cho
\(\frac{x}{y+z+1}\text{=}\frac{y}{x+z+1}\text{=}\frac{z}{x+y-2}\)
Tìm x,y,z. Ai nhanh tick cho
*Xét trường hợp x+y+z = 0
Áp dụng tính chất dãy tỉ số bằng nhau
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = x+y+z/(y+z+1+x+z+1+x+y-2)=0
=>x=y=z=0
*Xét x+y+z khác 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có các cặp (x,y,z) thỏa mãn là: (0,0,0) và (1/2,1/2,-1/2)
Tìm x,y,z biết:
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\) và x+y+z=18.
Ai nhanh nhất mình cho 3 tick không tin cứ thử.
\(\Rightarrow\frac{x+1+y+2+z+3}{3+4+5}\)
\(\Rightarrow\frac{24}{12}=2\)
\(\frac{x+1}{3}=2\Rightarrow x=5\)
\(\frac{y+2}{4}=2\Rightarrow y=6\)
\(\frac{z+3}{5}=2\Rightarrow z=7\)
Tìm x,y,x biết:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{7}=\frac{z}{4}\)và x+y-z=69
Ai nhanh mik tick ba cái nè
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)
\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow x=52;y=63;z=36\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{7}=\frac{z}{4}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{14}=\frac{y}{21}\\\frac{y}{21}=\frac{z}{12}\end{cases}\Rightarrow}\frac{x}{14}=\frac{y}{21}=\frac{z}{12}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.14=42\\y=3.21=63\\z=3.12=36\end{cases}}\)
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{7}=\frac{z}{4}\)
=> \(\frac{x}{14}=\frac{y}{21};\frac{y}{21}=\frac{z}{12}\)
=> \(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
Từ trên ta có:
\(\frac{x}{14}=3=>x=3.14=42\)
\(\frac{y}{21}=3=>y=3.21=63\)
\(\frac{z}{12}=3=>z=3.12=36\)
Vậy x = 42
y = 63
z = 36
ỦNG HỘ NHA
Tìm x;y;z biết:
\(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{4}\)
\(x+y-y-z+z+x=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow2x=\frac{5}{12}\)
\(\Rightarrow x=\frac{5}{12}:2\)
\(\Rightarrow x=\frac{5}{24}\)
Có x rồi bạn thế vào => ra được y rồi thế y vòa => được z
1. Cho x,y,z>o và x+y+z=1. Tìm Min P=\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)
2. Cho x,y,z >0 và x+y+z=3.Tìm Min P=\(\frac{x^2}{y+1}\)+\(\frac{y^2}{z+1}\)+\(\frac{z^2}{x+1}\)
Nhanh lên nha các bn. mik cần gấp lắm. Sẽ tick 10 tick cho bn trả lời nhanh nhất!!
Cảm ơn nhìu^^ ありがとう
2.
Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1
1:
Áp dụng bất đẳng thức Cô si:
\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)
\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)
\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)
\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)
\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)
\(=1\left[1+\frac{1}{4}\right]\)
\(=1+\frac{5}{4}=\frac{9}{4}\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
2. áp dạng bất đẳng thức cauchy - schwarz dạng engel
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)
dấu bằng xay ra khi x=y=z=1
lm bất đẳng thức cô si nhé!!! Thanks
Tìm x,y,z biết \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
với \(x,y,z\ne0\)
Ap dụng tính chất dãy tỉ số bằng nhau
: a/b = c/d = e/f = a+b+c/b+d+f có b+d+f \(\ne\)0
Ta xét trường hợp x+y+z = 0 có :
x/y+z+1= y/x+z+1 = z/(x+y-2) = 0 => x = y = z = 0
Ta xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/y+z+1 = y/x+z+1 = z/x+y-2 = x+y+z/2x+2y+2z = 1/2
=> x+y+z = 1/2 và:
2x = y+z+1 = 1/2 - x + 1 => x = 1/2
2y = x+z+1 = 1/2 - y + 1 => y = 1/2
z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp x,y,z thỏa mãn: 0,0,0 và 1/2,1/2,-1/2
tìm x,y,z. Biết \(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x=y+5}\)
Tìm x, y, z biết \(\frac{x}{y+z+2016}=\frac{y}{x+z+2017}=\frac{z}{x+y-4033}=x+y+z\)
Tìm x, y, z biết \(\frac{x}{y+z+2016}=\frac{y}{x+z+2017}=\frac{z}{x+y-4033}=x+y+z\)