cho x,y,z là các số thực khác 0, thõa mãn các điều kiện 1 \(\le\) x \(\le\) \(\frac{7}{3};\frac{1}{2}\le y\le\frac{7}{6};\frac{1}{3}\le z\le\frac{7}{9}\)
Cho 3 số không âm x,y,z thỏa mãn điều kiện: x+y+z=1. Chứng minh rằng:
\(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
cho các số thực dương x;y;z thõa mãn \(x+y+z=1\)chứng minh rằng:
\(\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z}{z+xy}\le\frac{9}{4}\)
Đặt \(a=\sqrt{\frac{yz}{x}},b=\sqrt{\frac{zx}{y}},c=\sqrt{\frac{xy}{z}}\) \(\Rightarrow ab+bc+ac=1\)
Suy ra bài toán trở về dạng chứng minh \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{9}{4}\)
\(\Leftrightarrow1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\le\frac{9}{4}\)
\(\Leftrightarrow\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\ge\frac{3}{4}\)(*)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)
Đặt t = a+b+c \(\Rightarrow a^2+b^2+c^2=t^2-2\)
Ta cần chứng minh \(\frac{t^2}{t^2+1}\ge\frac{3}{4}\Leftrightarrow4t^2\ge3t^2+3\Rightarrow t^2\ge3\)(Luôn đúng vì \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)=3\))
Vậy ta có đpcm
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏiCho x, y là các số thực dương, z là số thực khác 0 thỏa mãn điều kiện \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\). Chứng minh \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\)
Ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow\)\(x+y=x+y-2z+2\sqrt{\left(x-z\right)\left(y-z\right)}\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)
Theo giả thiết, ta có:
theo giả thiết, ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}-\frac{1}{x}=\frac{1}{y}\)\(\Rightarrow\frac{x-z}{zx}=\frac{1}{y}\Rightarrow x-z=\frac{zx}{y}\)
Tương tự, ta có: \(y-z=\frac{zy}{x}\)
Do đó: \(2\sqrt{\left(x-z\right)\left(y-z\right)}=2\sqrt{\frac{zx}{y}.\frac{zy}{x}}=2z\) (1)
ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)(2)
Thay (2) vào (1) ta thấy (2) luôn đúng
Suy ra ĐPCM
Vì \(x>0,y>0\Rightarrow\frac{1}{x}>0;\frac{1}{y}>0\)
mà \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{z}>0\Rightarrow z>0\)
Ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Leftrightarrow yz+zx-xy=0\)
\(\Leftrightarrow-z^2=-z^2+yz+zx-xy=-\left(x-z\right)\left(y-z\right)\)
\(\Leftrightarrow z^2=\left(x-z\right)\left(y-z\right)>0\)
\(\Rightarrow z=\sqrt{\left(x-z\right)\left(y-z\right)}\left(z>0\right)\)
Lại có: \(x+y=x-z+y-z+2z\)
\(=\left(x-z\right)+\left(y-z\right)+2\sqrt{\left(x-z\right)\left(y-z\right)}=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
Suy ra \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\) (ĐPCM)
Cho các số thực x, y, z thõa mãn xyz = 1. Chứng minh rằng:
\(\frac{1}{\left(2+x\right)\left(2+\frac{1}{y}\right)}+\frac{1}{\left(2+y\right)\left(2+\frac{1}{z}\right)}+\frac{1}{\left(2+z\right)\left(2+\frac{1}{x}\right)}\le\frac{1}{3}\)
\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)
\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)
Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\) (*)
Đặt (x;y;z) -------> \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)
Suy ra (*) <=> \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)
Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)
Đẳng thức xảy ra <=> x = y = z = 1
CHO X,Y,Z LÀ CÁC SỐ THỰC KHÔNG ÂM THỎA MÃN X+Y+Z=3 VÀ XY+YZ+ZX KHÁC 0 . CMR :
\(\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}\le\frac{25}{3\sqrt[3]{4.\left(xy+yz+zx\right)}}\)
thanks in advance <3
Áp dụng BĐT AM-GM: $VP\leq \frac{25}{yz+zx+xy+4}$
Cần c/m: $\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}$\leq \frac{25}{yz+zx+xy+4}$
$\Leftrightarrow (yz+zx+xy)(xy^{2}+yz^{2}+zx^{2})+4(xy^{2}+yz^{2}+zx^{2})\leq 25xyz+4(yz+zx+xy)+16$
BĐT trên sẽ được c/m nếu c/m được: $xy^{2}+yz^{2}+zx^{2}\leq 4$.
KMTTQ, g/sử y nằm giữa x và z. $\Rightarrow x(x-y)(y-z)\geq 0$
$\Leftrightarrow xy^{2}+yz^{2}+zx^{2}\leq y(x^{2}+xz+z^{2})\leq y(x+z)^{2}$
Đến đây áp dụng BĐT AM-GM:
$y(x+z)^{2}=4.y.(\frac{x+z}{2})(\frac{x+z}{2})\leq \frac{4(y+\frac{x+z}{2}+\frac{x+z}{2})^{3}}{27}=\frac{4(x+y+z)^{3}}{27}=4$ (đpcm)
Dấu bằng xảy ra khi, chẳng hạn $x=0;y=1;z=2$
Áp dụng BĐT AM-GM và BĐT Rearrangement ta có:
\(VT=\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}\)
\(=\frac{\left(x+y+z\right)^2+3\left(x+y+z\right)+xy^2+yz^2+zx^2+3}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)\(\le\frac{21+y\left(x+z\right)^2}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\le\frac{21+\frac{\left(\frac{2\left(x+y+z\right)}{3}\right)^3}{2}}{3\sqrt[3]{4\left(xy+yz+zx\right)}}=\frac{21+4}{3\sqrt[3]{4\left(xy+yz+zx\right)}}=\frac{25}{3\sqrt[3]{4\left(xy+yz+zx\right)}}\)
Dấu "=" xảy ra <=> (x;y;z)=(2;1;0) và hoán vị của nó
xml hkjmf,gkjbhvn jbkvmcbnvdyjxnbv hjgfvchjwbfhyergfvyug h ghbf vchdsvhdc ghv eucbtrgvtcfrtfvgtcb tybk cjvh dgsx hjutygfvhyfhefrd cr fb kosciugyrturikjht54tr273r6734vn cjhvdfbv dfjbgerutjh37347t567 t gn fvbrhkjbfghty 66u 67gfbrhtb vbnbdffrhg ';\ hvgn hvbhzxn cb gvfycbher 74y6t5rbfvnhsgt hbgvdhcvhjgey6t5u gewytdfjbxjhdv bn 6t5675t47t5648b gryjhvdhybgfvdghv d vdfstrcdgvcc ghfvdshvh bbv3rt364tr bgryjhvbnh vznhbbcv nbmhfbvdghbv mhdfbdschmaewugugf ygvrfyug s g dg vyga4ut53746r87hyu rf5ygygcsrbv sdbv x vc bgyergty4gfytrfygtyfgrgyfyjugrfauygfugdv euygt674y4375y74
Cho x,y,z là 3 số thực dương thõa mãn x+y+z\(\le\frac{3}{2}\). Tìm Min A=\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)
Áp dụng bđt bunhiacopxki, ta có:
\(\left(x^2+\frac{1}{x^2}\right)\left(1+16\right)\ge\left(x+\frac{4}{x}\right)^2\) => \(x^2+\frac{1}{x^2}\ge\frac{\left(x+\frac{4}{x}\right)^2}{17}\)
=> \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{x+\frac{4}{x}}{\sqrt{17}}=\frac{x}{\sqrt{17}}+\frac{4}{x\sqrt{17}}\)
CMTT: \(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{y}{\sqrt{17}}+\frac{4}{\sqrt{17}y}\)
\(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{z}{\sqrt{17}}+\frac{4}{\sqrt{17}z}\)
=> A \(\ge\frac{x+y+z}{\sqrt{17}}+\frac{4}{\sqrt{17}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x+y+z}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}\)(bđt: 1/a + 1/b + 1/c > = 9/(a+b+c)
=> A \(\ge\frac{16\left(x+y+z\right)}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}-\frac{15\left(x+y+z\right)}{\sqrt{17}}\)
A \(\ge2\sqrt{\frac{16\left(x+y+z\right)}{\sqrt{17}}\cdot\frac{36}{\sqrt{17}\left(x+y+z\right)}}-\frac{15\cdot\frac{3}{2}}{\sqrt{17}}\)(Bđt cosi + bđt: x + y + z < = 3/2)
A \(\ge\frac{48}{\sqrt{17}}-\frac{45}{2\sqrt{17}}=\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra <=> x = y= z = 1/2
Vậy MinA = \(\frac{3\sqrt{17}}{2}\) <=> x = y = z = 1/2
Cho x,y,z là các số thực thoả mãn x+y+z=5 và x2+y2+z2=9
CMR \(1\le x,y,z\le\frac{7}{3}\)
Cho hai số dương x,y thõa mãn điều kiện x + y bé hơn hoặc bằng 1 . CM
x\(x^2-\frac{3}{4x}-\frac{x}{y}\le-\frac{9}{4}\)
bỏ chữ x đầu nhá mình ghi nhầm :>
Cho x, y, z là 3 số thực thõa mãn điều kiện: x + y + z = 3 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\)
Chứng minh ít nhất 1 trong 3 số x, y, z bằng 3