chứng minh rằng
S=2+2529+213+...+237+241+245 chia hết cho 17
Bài 1: Cho S= 3 + 3^2 + 3^3 +...+ 3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1+2+2^2+2^3+...+2^17) chia hết cho 9
Bài 1: Cho S= 3 + 3^2 +3^3 +...+3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1 + 2 + 2^2 + 2^3 +...+ 2^17 ) chia hết cho 9
S=\(17+17^2+17^3+...+17^{18}\).Chứng minh rằng S chia hết cho 307
S = 17 . [ \(1+17+17^2\)] + \(17^3\left[1+17+17^2\right]\)+.......+\(^{17^5\left[1+17+17^3\right]}\)
S = 17 . 307 + 17^3 . 307 +....+ 17^5 .307
S= 307[ 17+17^3 +...+17^5] => S chia hết cho 307
Có tất cả số hạng ở biểu thức S là:
(18-1):1+1=18(số)
Vì 18 chia hết cho 3 nên ta chia biểu thức S làm 6 nhóm mỗi nhóm có 3 số hạng
S=17+17^2+17^3+.......+17^18
S=(17+17^2+17^3)+.......+(17^16+17^17+17^18)
S=17.(1+17+17^2)+........+17^16.(1+17+17^2)
S=17.307+.............+17^16.307
S=307.(17+........+17^16) chia hết cho 307
Vậy S chia hết cho 307
~shizadon~
\(S=17+17^2+17^3+...+17^{18}\)
\(S=\left(17+17^2+17^3\right)+...+\left(17^{16}+17^{17}+17^{18}\right)\)
\(S=71\left(1+17+17^2\right)+...+17^{17}\left(1+17+17^2\right)\)
\(S=17.307+...+17^{17}307\)
\(S=307\left(17+...+17^{17}\right)\)
\(\Rightarrow S⋮307\)
1. Cho 3.a +2.b chia hết cho 17
chứng minh rằng : 10.a +b chia hết cho 17
2.Cho a = 5.b chia hết cho 17
chứng minh rằng: 10.a +b chia hết cho 17
Bài 1 Cho biết 3a+2bchi hết cho 17 ( a,b thuộc N ) . Chứng minh rằng 10a + b chia hết cho 17
Bài 2 Cho biết a - 5b chia hết cho 17 ( a,b thuộc N) Chứng minh rằng 10a + b chia hết cho 17
Bài 3 a) Chứng minh rằng Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N). Điều ngược lại có đúng ko?
b)Chứng minh rằng 2x + 3ychia hết cho 17 thì 9x + 5y chia hết cho 17 (x,y thuộc N). Điều ngược lại có đúng ko?
chứng minh rằng : A= (5x+47y) . (x+6y) chia hết cho 17 thì A chia hết cho 289
Cho S = 15 + 152 + 153 + ... + 1518
Chứng minh S chia hết cho 241
S=(15+152+153)+...+ (1516+1517+1518)
S=(15+152+153)+...+1515.(15+152+153)
S=(15+152+153).(1+..+1515)
S=3615.(1+..+1515)
mà 3615 chia hết cho 241
=> S chia hết cho 241
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
Ta có : tích của 2 và 3 thì chia hết cho 17
=> 10a = 2 x 5 x a + b chia hết cho 17
Những câu dưới bạn tự làm nha
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
51a:17
=> 51a-a+5b:17
=> 50a+5b:17
=> 5(10a+b):17
=> 10a+b:17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17