Cho số: abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37.
Chứng minh rằng: nếu số tự nhiên abc chia hết cho 37 thì các số bca và cab cũng chia hết cho 37 ?
(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
Chứng minh rằng mỗi số tự nhiên abc chia hết cho 37 thì các số bca và cab chia hết cho 37.
Số (abc) chia hết cho 37 => 100a + 10b + c chia hết cho 37 =>(Nhân 10 vô) 1000a + 100b + 10c chia hết cho 37 (1). Trừ cho 999a thì (1) vẫn chia hết cho 37 do 999 chia hết cho 37 từ đó suy ra đpcm!
cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
Câu 6: Cho số: \(\overline{abc}\) chia hết cho 37. Chứng minh rằng số \(\overline{bca}\) chia hết cho 37.
chứng minh:bca⋮37
bca=b.100+c.10+a
bca=b.100+c.10+a.1
bca=(b+c+a).(100+10+1)
bca=(b+c+a).111
bca=(b+c+a).3.37
⇒bca⋮37
Cho số tự nhiên có 3 chữ số abc chia hết cho 37. chứng minh (bca + cab) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
Chứng minh rằng : mếu abc chia hết cho 37 thì bca và cab đều chia hết cho 37
đặt A = abc = ( 102 . a + 10 . b + c ) \(⋮\)37
\(\Rightarrow\)10A = ( 103 . a + 102 . b + 10c ) \(⋮\)37
10A = 102 . b + 10 . c + a + 999a = bca + 999a
vì 999a = 37 . 27a \(⋮\)37 ; 10A \(⋮\)37
suy ra : bca \(⋮\)37
tương tự ta có : 10bca \(⋮\)37, 999b \(⋮\)37
suy ra : cab \(⋮\)37
Chứng minh rằng: Nếu abc chia hết cho 37 thì bca và cab đều chia hết cho 37
Vì chia hết cho 37 chỉ cần tổng các chữ số chẳng hạn như 3 ; 9.
=>abc chia hết cho 37 thì cả bca và cab chia hết cho 7.
Ta có abc chia hết cho 37 thì abc0 chia hết cho 37.
-> a000 + bc0 chia hết cho 37
-> 1000xa +bc0 chia hết cho 37
-> 999xa + a + bc0 chia hết cho 37
-> 27x37xa + bca chia hết cho 37
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.
Chúc bạn học tốt
cho abc chia hết cho 37 chứng minh rằng bca chia hết cho 37 với a,,b,c thuộc N*