tinh gia tri bieu thuc sau : A=1+2+3+...+2015
tinh gia tri bieu thuc
A=1+1/2(1+2)+1/3(1+2+3)+....+1/2015(1+2+3+...+2015)
tinh gia tri bieu thuc A=2^2015-(2^2014+2^2013+...+2+1)
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
Tinh gia tri bieu thuc: A=1/2*5+1/5*8+1/8*11+....+1/2012*2015
A=1/2*5+1/5*8+1/8*11+...+1/2012*1015
=1/3*(1/2-1/5+1/5-1/8+1/8-1/11+...+1/2012-1/2015)
=1/3*(1/2-1/1/2015)
=1/3*2013/4030
=671/4030
vậy A=671/4030
tim gtnn cua bieu thuc sau (x^2 -9x)^2+ |y-2 | +10
tinh gia tri bieu thuc E = x^10 - 2014 x^9 -2014 x^8 - ... - 2014 x -1 biet x=2015
a)
\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)
b)
cách 1: ghép tạo số hạng (x-2015)
E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015
hoặc
x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản
-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014
(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014
Tinh gia tri bieu thuc: C = 1 - 3 + 5 - 7 + ........................+ 2013 - 2015 + 2017
Kết quả k tính đc vì dãy số k có quy luật
So cac so hang tru 2017:(2015-1)/2+1=1008 so=504 cap (1-3)=504 cap -2
-2*504+2017=-1008+2017=1009
minh nha
Cho bieu thuc A = \(^{x2+4x+3}\)
a Tinh gia tri bieu thuc tai x= \(\frac{-1}{2}\)
b Tinh gia tri x de bieu thuc A bang 0
a. Tại x=\(\frac{-1}{2}\), ta có:
\(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)
b. Ta có:
\(x^2+4x+3=0\)
\(\Rightarrow x^2+x+3x+3=0\)
\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)
\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy \(x=-1;x=-3\)
Cho A= 1-2+2^2-2^3+....-2^2013+2^2014
Tinh gia tri cua bieu thuc B= 3A-2^2015
tinh gia tri bieu thuc:
-1-2+3+4-5-6+7+8-9-10+11+12-...-2013-2014+2015+2016