Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Như Ý
Xem chi tiết
Trần sỹ đạt
Xem chi tiết
Ngọc Vĩ
19 tháng 9 2015 lúc 21:46

\(=\frac{1+a}{2\sqrt{a}-a}.\frac{2\sqrt{a}-a}{-\left(1+\sqrt{a}\right)}=\frac{-\left(1+a\right)}{1+\sqrt{a}}\)

Trần sỹ đạt
Xem chi tiết
Minh Triều
6 tháng 9 2015 lúc 6:49

\(B=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1+\sqrt{a}}\right)\left(\frac{1}{\sqrt{a}}+1\right)\)

\(=\left(\frac{1+\sqrt{a}}{1-a}-\frac{1-\sqrt{a}}{1-a}\right)\left(\frac{\sqrt{a}}{a}+\frac{a}{a}\right)\)

\(=\frac{1+\sqrt{a}-1+\sqrt{a}}{1-a}.\frac{\sqrt{a}+a}{a}\)

\(=\frac{2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\frac{\sqrt{a}.\left(1+\sqrt{a}\right)}{a}\)

\(=\frac{2}{1-\sqrt{a}}\)

Ariels spring fashion
Xem chi tiết
Tô Hoài An
1 tháng 11 2020 lúc 20:21

\(M=\left(\frac{2+\sqrt{a}}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\frac{a\left(\sqrt{a}+1\right)-\left(\sqrt{a}+1\right)}{a}\)

\(=\frac{\left(2+\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}-2+a-\sqrt{a}-a-\sqrt{a}+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}\left(\sqrt{a-1}\right)}{a\left(\sqrt{a}+1\right)}=\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

Khách vãng lai đã xóa
Tô Hoài An
1 tháng 11 2020 lúc 20:29

\(N=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{a+1+2\sqrt{a}-a-1+2\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{4\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}=4\sqrt{a}\left(\frac{1}{a-1}+1\right)\cdot\frac{a-1}{\sqrt{a}}=4\cdot\left(a-1\right)\left(\frac{1}{a-1}+1\right)\)

\(=4\cdot\left(a-1\right)\)

vừa tham khảo cách làm vừa check lại hộ tớ với nhé :33 

Khách vãng lai đã xóa
Nguyễn Khánh Ly
1 tháng 11 2020 lúc 20:35
\(Với\)\(a>0\);\(a\ne1\)ta có:

\(M=(\frac{2+\sqrt{a}}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}).(\frac{a\sqrt{a}+a-\sqrt{a}-1}{\sqrt{a}})\)

\(=[\frac{\sqrt{a}+2}{(\sqrt{a}+1)^2}-\frac{\sqrt{a}-2}{(\sqrt{a}+1)(\sqrt{a}-1)}].\frac{(a\sqrt{a}-\sqrt{a})+(\sqrt{a}-1)}{\sqrt{a}}\)

\(=[\frac{(\sqrt{a}-2).(\sqrt{a}-1)}{(\sqrt{a}+1)^2.(\sqrt{a}-1)}-\frac{(\sqrt{a}-2).(\sqrt{a}+1)}{(\sqrt{a}+1)^2.(\sqrt{a}-1)}].\frac{\sqrt{a}(a-1)+(a-1)}{\sqrt{a}}\)

\(=[\frac{a+\sqrt{a}-2}{(\sqrt{a}+1)(a-1)}-\frac{a-\sqrt{a}-2}{(\sqrt{a}+1)(a-1)}].\frac{(a-1).(\sqrt{a}+1)}{\sqrt{a}}\)

\(=\frac{a+\sqrt{a}-2-a+\sqrt{a}+2}{(a-1).(\sqrt{a}+1)}.\frac{(a-1)(\sqrt{a}+1)}{\sqrt{a}}\)

\(=\frac{2\sqrt{a}}{(a-1)(\sqrt{a}+1)}.\frac{(a-1)(\sqrt{a}+1)}{\sqrt{a}}\)

\(=2\)

Vậy \(M=2\)

\(Với\)\(a>0;a\ne1:\)

\(N=(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}).(\sqrt{a}-\frac{1}{\sqrt{a}})\)

\(=[\frac{(\sqrt{a}+1).(\sqrt{a}+1)}{\left(\sqrt{a}-1\right).(\sqrt{a}+1)}-\frac{(\sqrt{a}-1).(\sqrt{a}-1)}{(\sqrt{a}-1).(\sqrt{a}+1)}+\frac{4\sqrt{a}(a-1)}{(\sqrt{a}-1).(\sqrt{a}+1)}].\frac{a-1}{\sqrt{a}}\)

\(=\frac{(\sqrt{a}+1)^2-(\sqrt{a}-1)^2+(4a\sqrt{a}-4\sqrt{a})}{(\sqrt{a}-1).(\sqrt{a}+1)}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{4a\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}}\)\(=4a\)

Vậy \(N=4a\)

Khách vãng lai đã xóa
Nguyễn Thị Trúc Phượng
Xem chi tiết
Nguyễn Thị Trúc Phượng
23 tháng 7 2016 lúc 21:52

lam gjup vs mn oi

Ngọc Vĩ
23 tháng 7 2016 lúc 22:03

1/ ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)

\(A=\left[\frac{x}{\sqrt{x}\left(x-4\right)}-\frac{6}{3\left(\sqrt{x}-2\right)}+\frac{1}{\sqrt{x}-2}\right]:\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)

\(=\left[\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}-2}\right]:\left(\frac{6}{\sqrt{x}+2}\right)\)

\(=\frac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\frac{\left(\sqrt{x}+2\right)}{6}\)

\(=\frac{-2}{\sqrt{x}-2}.\frac{1}{6}=-\frac{1}{3\left(\sqrt{x}-2\right)}\)

2/ Để \(A>2\Rightarrow\frac{-1}{3\left(\sqrt{x}-2\right)}>2\)\(\Rightarrow6\sqrt{x}-12+1>0\Rightarrow6\sqrt{x}-11>0\Rightarrow\sqrt{x}>\frac{11}{6}\)

                             \(\Rightarrow x>\frac{121}{36}\)

Nguyễn Thị Trúc Phượng
23 tháng 7 2016 lúc 22:54

sai r bn oi

Thu Thủy vũ
Xem chi tiết
Lan nguyễn
Xem chi tiết
Đàm Đức Mạnh
2 tháng 10 2017 lúc 18:01

bang@@@@@

nguyen le duy hung
Xem chi tiết
Không Tên
11 tháng 7 2018 lúc 20:04

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

Nguyễn Nhã Thanh
Xem chi tiết
Đinh Đức Hùng
10 tháng 8 2017 lúc 16:27

\(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{a-1-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)