tìm x, biết:
\(\frac{x-1}{2000}+\frac{x-2}{1999}+\frac{x-3}{1998}+...+\frac{x-1999}{2}=1999\)
Tìm x,y \(\in Z\):
|x-3|.|x+3|=16
Chứng minh:
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2016^2}< \frac{1}{2}\)
So sánh:
\(A=\frac{1999^{1999}+1}{1999^{2000}+1}\)và \(B=\frac{1999^{1998}+1}{1999^{1999}+1}\)
Tìm x :
a) \(\frac{x+1}{2000}+\frac{x+2}{1999}+\frac{x+ 3}{1998}+\frac{x+4}{1997}=-4\)
\(b.\frac{x+1}{1999}+\frac{x+2}{2000}+\frac{x+3}{2001}=\frac{x+4}{2002}+\frac{x+5}{2003}+\frac{x+6}{2004}\)
\(a.\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\left(\frac{x+4}{1997}+1\right)=0\)
\(=\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)
\(=\left(x+2001\right).\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)
\(=>x+2001=0\)
\(x=-2001\)
\(b.\left(\frac{x+1}{1999}-1\right)+\left(\frac{x+2}{2000}-1\right)+\left(\frac{x+3}{2001}-1\right)=\left(\frac{x+4}{2002}-1\right)+\left(\frac{x+5}{2003}-1\right)\)\(+\left(\frac{x+6}{2004}-1\right)\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}=\frac{x+1998}{2002}+\frac{x+1998}{2003}+\frac{x+1998}{2004}\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}-\frac{x+1998}{2002}-\frac{x+1998}{2003}-\frac{x+1998}{2004}=0\)
\(\left(x+1998\right).\left(\frac{1}{1999}+\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
\(=>x+1998=0\)
\(x=-1998\)
dễ quá!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\frac{x+1}{2000}+\frac{x+2}{1999}+\frac{x+3}{1998}+\frac{x+4}{1997}=-4\)
\(\Leftrightarrow\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\) \(\left(\frac{x+4}{1997}+1\right)=0\)
\(\Leftrightarrow\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)
\(\Leftrightarrow\left(x+2001\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)
Mà : \(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\ne0\)
\(\Rightarrow x+2001=0\)
\(\Leftrightarrow x=-2001\)
tìm x biết:
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Rightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+x+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}\)
\(\Rightarrow\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\ne0\)
Nên x + 2010 = 0 => x = -2010
x+1/2009+1+x+2/2008+1+x+3/2007+1=x+10/2000+1+x+11/1999+1+x+12/1998
x+2010/2009+x+2010/2008+x+2010/2007=x+2010/2000+x+2010/1999+x+2010/1998
x+2010*(1/2009+1/2008+1/2007-1/200-1/1999-1/1998)=0
x+2010=0
x=-2010
Tìm x
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Leftrightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
\(\Leftrightarrow x+2010=0\)
\(\Leftrightarrow x=-2010\)
\(\frac{x+1}{2001}+\frac{x+2}{2000}=\frac{x+3}{1999}+\frac{x+4}{1998}\)
\(\frac{x+1}{2001}+\frac{x+2}{200}=\frac{x+3}{1999}+\frac{x+4}{1998}\)
\(\left(\frac{x+1}{2001}+1\right)+\left(\frac{x+2}{2000}+1\right)=\left(\frac{x+3}{1999}+1\right)+\left(\frac{x+4}{1998}+1\right)\)
\(\frac{x+2002}{2001}+\frac{x+2002}{2000}=\frac{x+2002}{1999}+\frac{x+2002}{1998}\)
\(\frac{x+2002}{2001}+\frac{x+2002}{2000}-\frac{x+2002}{1999}-\frac{x+2002}{1998}=0\)
\(\left(x+2002\right).\left(\frac{1}{2001}+\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
\(\Rightarrow x+2002=0\)
\(\Rightarrow x=0-2002\)
\(\Rightarrow x=-2002\)
\(\frac{x+1}{2001}+\frac{x+2}{2000}=\frac{x+3}{1999}+\frac{x+4}{1998}\)
\(\Rightarrow\frac{x}{2001}+\frac{1}{2001}+\frac{x}{2000}+\frac{2}{2000}=\frac{x}{1999}+\frac{3}{1999}+\frac{x}{1998}+\frac{4}{1998}\)
\(\Rightarrow\frac{x}{2001}+\frac{x}{2000}+\frac{x}{1999}+\frac{x}{1998}=\frac{1}{2001}+\frac{2}{2000}+\frac{3}{1999}+\frac{4}{1998}\)
\(\Rightarrow x.\frac{1}{2001}+x.\frac{1}{2000}+x.\frac{1}{1999}+x.\frac{1}{1998}=\frac{1}{2001}+\frac{2}{2000}+\frac{3}{1999}+\frac{4}{1998}\)
\(\Rightarrow x(\frac{1}{2001}+\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998})=\frac{1}{2001}+\frac{2}{2000}+\frac{3}{1999}+\frac{4}{1998}\)
\(\Rightarrow x=\frac{1}{2000}+\frac{2}{1999}+\frac{3}{1998}\)
Tìm x biết:
1) \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
2) \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
1) \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
<=> \(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
<=> \(x+1=0\) (do 1/2 + 1/3 + 1/4 - 1/5 - 1/6 khác 0)
<=> \(x=-1\)
Vậy...
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
<=> \(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> \(x+2010=0\) (do 1/2009 + 1/2008 + 1/2007 - 1/2000 - 1/1999 - 1/1998 khác 0)
<=> \(x=-2010\)
Vậy....
Tìm x, biết:
\(\left(\frac{1999}{2}+\frac{1998}{3}+\frac{1997}{4}+.......+\frac{1}{2000}+4000\right)x=1+\frac{1}{2}+\frac{1}{3}\)\(\frac{1}{3}\)
Ta có:(1+1999/2)+(1+1998/3)+...(2/1999)(có 1998 tổng<=>1998 số 1)+(2000 - 1998)+400
= 2001/2+2001/3+...+2001/1999+402
=2001.(1/2+1/3+...+1/1999)+402(1)
Thay (1) vào biểu thức trên và tính(tự tính nha!,tk cho mk!!!)
Tìm x biết:
\(\frac{x+15}{2000}+\frac{x+16}{1999}=\frac{x+17}{1998}+\frac{x+18}{1997}\)
\(\frac{x+15}{2000}+\frac{x+16}{1999}=\frac{x+17}{1998}+\frac{x+18}{1997}\)
\(\Leftrightarrow\frac{x+15}{2000}+1+\frac{x+16}{1999}+1=\frac{x+17}{1998}+1+\frac{x+18}{1997}+1\)
\(\Leftrightarrow\frac{x+2015}{2000}+\frac{x+2015}{1999}=\frac{x+2015}{1998}+\frac{x+2015}{1997}\)
\(\Leftrightarrow\frac{x+2015}{2000}+\frac{x+2015}{1999}-\frac{x+2015}{1998}-\frac{x+2015}{1997}=0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2000}+\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\right)=0\)
Có: \(\frac{1}{2000}+\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\ne0\)
\(\Rightarrow x+2015=0\Rightarrow x=-2015\)
\(\frac{x+1}{2009}+\frac{x+2}{2008}=\frac{x+16}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)