Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cộng sản MEME
Xem chi tiết
👁💧👄💧👁
9 tháng 6 2021 lúc 15:09

\(a^2-2a+6b+b^2=-10\\ \Leftrightarrow a^2-2a+1+b^2+6b+9=0\\ \Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\)

Vậy \(\left(a;b\right)=\left(1;-3\right)\)

Lê Thị Hồng Vân
9 tháng 6 2021 lúc 15:43

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \Leftrightarrow xy+yz+zx=0\\ \Rightarrow\left\{{}\begin{matrix}xy+yz=-zx\\xy+zx=-yz\\yz+zx=-xy\end{matrix}\right.\)

Ta có: 

\(A=\dfrac{xz+yz}{z^2}+\dfrac{xy+yz}{y^2}+\dfrac{xy+xz}{x^2}\\ =\dfrac{-xy}{z^2}+\dfrac{-xz}{y^2}+\dfrac{-yz}{x^2}\\ =-xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\\ =-xyz\cdot\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}\right)\\ =0\)

Phạm Phương Linh
Xem chi tiết
Trên con đường thành côn...
4 tháng 8 2021 lúc 21:10

undefined

Nguyễn Hoàng Dương
11 tháng 4 2024 lúc 21:42

kẻ lười biếng nạp card, đi ô tô

😈tử thần😈
Xem chi tiết
Thu Thao
2 tháng 5 2021 lúc 17:50

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) (\(x,y,z\ne0;x\ne y\ne z\)

\(\Leftrightarrow xy+yz+xz=0\)

\(\Leftrightarrow2yz=yz-xy-xz\)

\(\Leftrightarrow x^2+2yz=\left(x-y\right)\left(x-z\right)\)

CMTT : \(\left\{{}\begin{matrix}y^2+2xz=\left(y-z\right)\left(y-x\right)\\z^2+2xy=\left(z-x\right)\left(z-y\right)\end{matrix}\right.\)

\(A=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{z^2\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{z^2-xz-yz+xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{x\left(y-z\right)-z\left(y-z\right)}{\left(x-z\right)\left(y-1\right)}=1\)

Thề, gõ máy mệt gấp đôi viết tay =))

Trần Vũ Phương Thảo
Xem chi tiết
Nguyễn Ngọc Hà
Xem chi tiết
Lê Thị Hồng Vân
17 tháng 6 2018 lúc 15:40

a, \(\left|3x-4\right|+\left|3y+5\right|=0\)

Ta có :

\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)

\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)

b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

Ta có :

\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)

c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)

Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)

d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

Ta có :

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)

e, Câu cuối bn làm tương tự như câu a, b, c nhé!

Quốc Huy
Xem chi tiết
Phạm Phú Hoàng Long
12 tháng 11 2017 lúc 8:04

thanghoa

Phạm Phú Hoàng Long
12 tháng 11 2017 lúc 8:04

đúng rùi đó

huỳnh ny
12 tháng 11 2017 lúc 9:56

Sai leu

Phạm Phương Linh
Xem chi tiết
missing you =
13 tháng 8 2021 lúc 19:41

đề có thiếu không vậy?

Edogawa Conan
13 tháng 8 2021 lúc 19:53

Thiếu x,y,z,t ≥ 0 ; x+y+z+t=....

Vũ Linh
Xem chi tiết
missing you =
5 tháng 2 2022 lúc 9:25

\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)

\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)

\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)

Nguyễn Minh Dương
Xem chi tiết
Đào Trí Bình
16 tháng 8 2023 lúc 9:38

gợi ý nè:

thử cộng chúng lại xem

\(\dfrac{x}{y+z+1}\) = \(\dfrac{y}{x+z+2}\) = \(\dfrac{z}{x+y-3}\) = \(x+y+z\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y+z+1}\)=\(\dfrac{y}{x+z+2}\)=\(\dfrac{z}{x+y-3}\)=\(\dfrac{x+y+z}{y+z+1+x+z+2+x+y-3}\)

\(x+y+z\) = \(\dfrac{x+y+z}{2.\left(x+y+z\right)}\) = \(\dfrac{1}{2}\) (1)

\(\dfrac{x}{y+z+1}\) = \(\dfrac{1}{2}\) ⇒ 2\(x\) = y+z+1 

⇒ 2\(x\) + \(x\) = \(x+y+z+1\) (2)

 Thay (1) vào (2) ta có: 2\(x\) + \(x\) = \(\dfrac{1}{2}\) + 1

                                      3\(x\)      = \(\dfrac{3}{2}\) ⇒ \(x=\dfrac{1}{2}\)

\(\dfrac{y}{x+z+2}\) = \(\dfrac{1}{2}\) ⇒ 2y = \(x+z+2\) ⇒ 2y+y = \(x+y+z+2\) (3)

Thay (1) vào (3) ta có: 2y + y = \(\dfrac{1}{2}\) + 2 

                                   3y = \(\dfrac{5}{2}\) ⇒ y = \(\dfrac{5}{6}\)

Thay \(x=\dfrac{1}{2};y=\dfrac{5}{6}\) vào (1) ta có: \(\dfrac{1}{2}+\dfrac{5}{6}+z\) = \(\dfrac{1}{2}\)

                                                              \(\dfrac{5}{6}\) + z = 0 ⇒ z = - \(\dfrac{5}{6}\)

Kết luận: (\(x;y;z\)) = (\(\dfrac{1}{2}\); \(\dfrac{5}{6}\); - \(\dfrac{5}{6}\))

 

khoa
Xem chi tiết
Trần Minh Hoàng
12 tháng 3 2021 lúc 21:05

\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = z = 1.