Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quý Hoàng
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
Phùng Minh Quân
14 tháng 8 2020 lúc 1:01

gọi cạnh huyền là a và 2 cạnh góc vuông là b,c (cạnh thứ 3 là c\(;\)\(b,c>0,a>50\)\(\Rightarrow\) a,b có độ dài là 2 số nguyên tố 

\(\Rightarrow\)\(a,b\ne2\) (do có hiệu là 50)

ta có : \(a=b+50\)

\(\Rightarrow\)\(c^2=a^2-b^2=100b+2500\)

để c nhỏ nhất thì c^2 nhỏ nhất \(\Rightarrow\) b là số nguyên tố nhỏ nhất khác 2 thoả mãn \(100b+2500\) là số chính phương nhỏ nhất

thử chút ta thấy \(b=11\) là giá trị b cần tìm \(\Rightarrow\)\(\hept{\begin{cases}a=11+50=61\\c=\sqrt{61^2-11^2}=60\end{cases}}\) (nhận)

Khách vãng lai đã xóa
Phạm Phương Linh
Xem chi tiết
Phạm Phương Linh
Xem chi tiết
Nguyễn Thái Anh
Xem chi tiết
Nguyễn Thái Anh
19 tháng 3 2016 lúc 18:00

TH1: 2 cạnh nguyên tố đó là 2 cạnh góc vuông lần lượt: a;a+50a;a+50

Khi đó, cạnh huyền: a2+(a+50)2−−−−−−−−−−−√=2a2+100a+2500−−−−−−−−−−−−−−−√a2+(a+50)2=2a2+100a+2500

Với a=5 (loại).

Với a khác 5, có: a2≡1or4(mod5)→2a2+100a+2500≡2or3(mod5)a2≡1or4(mod5)→2a2+100a+2500≡2or3(mod5) kg là SCP.

Vậy TH này loại.

TH2: 1 cạnh huyền, 1 cạnh góc vuông: a;a+50a;a+50

Cạnh góc vuông còn lại: (a+50)2−a2−−−−−−−−−−−√=100a+2500−−−−−−−−−−√=10.a+25−−−−−√(a+50)2−a2=100a+2500=10.a+25

Đặt: a+25−−−−−√=t→a+25=t2⇔a=(t−5)(t+5)→t−5=1⇔t=6⇔a=11a+25=t→a+25=t2⇔a=(t−5)(t+5)→t−5=1⇔t=6⇔a=11 (đúng)

Vậy số đo 3 cạnh nhỏ nhất là: 11;60;6111;60;61 (11,61 nguyên tố)

Vậy đáp số giá trị nhỏ nhất của cạnh thứ 3: 60

Trần Tuyết Như
Xem chi tiết
Võ Thị Thà
Xem chi tiết
Dương Nhật Minh
Xem chi tiết
Điền Nguyễn Thanh
Xem chi tiết
Bùi Thế Hào
15 tháng 3 2018 lúc 11:53

Gọi đọ dài 2 cạnh góc vuông là a và b => Độ dài cạnh huyền là \(\sqrt{a^2+b^2}\)

Gọi đường cao là h.

=> Chu vi tam giác là: \(a+b+\sqrt{a^2+b^2}\)

Diện tích tam giác là: \(\frac{1}{2}.\sqrt{a^2+b^2}.h\)

Theo bài ra ta có: \(a+b+\sqrt{a^2+b^2}=\frac{1}{2}.\sqrt{a^2+b^2}.h\)

=> \(h=\frac{2a+2b+2\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}}=2+2.\frac{a+b}{\sqrt{a^2+b^2}}\)

Theo BĐT Bunhiacopxki có: \(\left(1.a+1.b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)

<=> \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)

=> \(h\le2+2.\frac{\sqrt{2\left(a^2+b^2\right)}}{\sqrt{a^2+b^2}}=2+2\sqrt{2}\)

=> Giá trị lớn nhất của chiều cao thỏa mãn đk là: \(h_{max}=2+2\sqrt{2}\)