Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đào Anh Khoa
Xem chi tiết
An Vy
Xem chi tiết
quang phan duy
9 tháng 7 2019 lúc 8:23

Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)

mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac

\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)

Hoàng Đức Khải
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Thắng Nguyễn
13 tháng 12 2016 lúc 11:49

Ngoài http://olm.vn/hoi-dap/question/779981.html còn cách khác

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(9a^3+3a^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow A\le\text{∑}\frac{a\left(\frac{1}{9a}+\frac{1}{3}+c\right)}{\left(a+b+c\right)^2}=\text{∑}\left(\frac{1}{9}+\frac{a}{3}+ac\right)\)

\(=\frac{1}{3}+\frac{a+b+c}{3}+\text{∑}ab\le\frac{1}{3}+\frac{1}{3}+\frac{\left(a+b+c\right)^2}{3}=1\)

Dấu "=" khi \(a=b=c=\frac{1}{3}\)

alibaba nguyễn
13 tháng 12 2016 lúc 9:52

a.b.c=1 thật hả. Rắc rối thế. Để nghĩ tiếp

Sống cho đời lạc quan
13 tháng 12 2016 lúc 10:22

không biết

Bờ lều bờ lếu
Xem chi tiết
Trần baka
2 tháng 5 2019 lúc 23:27

Câu hỏi của Hoàng Phúc - Toán lớp 9 - Học toán với OnlineMath tham khảo nha 

https://olm.vn/hoi-dap/detail/56804142395.html (vào TkHĐ của mình rồi ấn vào cái link xanh xnah nhá)

Ruby Bùi
Xem chi tiết
alibaba nguyễn
10 tháng 12 2016 lúc 10:09

Với a = b = c = 1 thì 

\(A=\frac{1}{1+1+1}+\frac{1}{1+1+1}+\frac{1}{1+1+1}=1\)

Với \(\hept{\begin{cases}a=b=2\\c=0,25\end{cases}}\)thì

\(A=\frac{2^3}{2+2+2^3.0,25}+\frac{2^3}{2+0,25+0,25^3.2}+\frac{0,25^3}{0,25+2+2^3.2}\approx4,841\)

Vậy A không phải là 1 hằng số với điều kiện đã cho nên đề sai. Xem lại đề nhé

Sống cho đời lạc quan
9 tháng 12 2016 lúc 17:35

bài này siêu khó

Monkey D Luffy
9 tháng 12 2016 lúc 19:54

dễ ẹc kết quả là 1

Trần Duy Hải Hoàng
Xem chi tiết
yen nhat nam
24 tháng 3 2018 lúc 20:18

3 số đầu ko bằng nhau 

Trần Duy Hải Hoàng
28 tháng 3 2018 lúc 21:09

gì chứ cho 3 số đó bằng nhau mak

đó là giả thiết 

Leonah
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Thắng Nguyễn
13 tháng 12 2016 lúc 11:46

Áp dụng BĐT AM-GM ta có:

\(9a^3+\frac{1}{3}+\frac{1}{3}\ge3\sqrt[3]{9a^3\cdot\frac{1}{3}\cdot\frac{1}{3}}=3a\)

\(3b^2+\frac{1}{3}\ge2\sqrt{3b^2\cdot\frac{1}{3}}=2b\)

Do đó: \(A\le\text{∑}\frac{a}{3a+2b+c-1}=\frac{a}{2a+b}\left(a+b+c=1\right)\)

\(2A\le\text{∑}\frac{2a}{2a+b}=3-\text{∑}\frac{b}{2a+b}=3-\text{∑}\frac{b^2}{2ab+b^2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(2A\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\Leftrightarrow A\le1\)

Dấu "=" khi \(a=b=c=\frac{1}{3}\)