Cho P= x^2 -xy + 2014x -n 2014y + 2. Tính P nếu x=-2014 và y=2013
Câu 4:Tính B=2016x-2017y/2015x+2018 +2018y-x/y-2018 với v-2017y=2018(3like)
Câu 5:cho x=2015 tính D=x^2015-2014x^2014-2014x^2013-...-2014x^2-2014x+1
Cho ba số x,y,z khác 0 thỏa mãn: x2+y2+z2 =xy+yz+xz
Tính giá trị của A= (2015-2014x/y)(2014-2013y/z)(2013-2012z/x)
tính p=x^4-2014x^3+2014x^2-2014x+2014 tại x=2013
Câu 5cho x=2015 tính D=x^2015-2014x^2014-2014x^2013-...-2014x^2-2014x+1
Cho x,y là hai số thực thỏa mãn: \(\sqrt{x-2013}+x^3=\sqrt{y-2013}+y^3\)
Tính giá trị của biểu thức:
B=\(\dfrac{2013x+2014y}{2013y+2014x}\)
\(\sqrt{x-2013}+x^3=\sqrt{y-2013}+y^3\)
\(\Leftrightarrow\sqrt{x-2013}-\sqrt{y-2013}+x^3-y^3=0\)
\(\Leftrightarrow\dfrac{x-y}{\sqrt{x-2013}+\sqrt{y-2013}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x-2013}+\sqrt{y-2013}}+\left(x^2+xy+y^2\right)\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow B=\dfrac{2013x+2014y}{2013y+2014x}=1\)
Cho x=2015
Tính A = x2015 -2014x2014 -2014x2013 - ... - 2014x2 - 2014x + 1
A= x2015 - 2014x2014 - 2014x2013 - ...- 2014x2 - 2014x + 1
= x2015 - (2015-1)x2014 - (2015-1)x2013 -...- (2015-1)x2 - (2015-1)x + 1
= x2015 - 2015x2014+1 - 2015x2013+1 -...- 2015x2+1 - 2015x+1+1
= x2015 - 2015x2014 - 2015x2013 -...- 2015x2 - 2015x+ (1+1+1+...+1)
Thay x= 2015 vào biểu thức ta có:
=20152015 - 20152015 - 20152014-...- 20153 - 20152+2015
=0 - 2.20152014 -...- 2.20153 - 20152 + 2015
= -2.( 20152014 - ...- 20153) - 20152+2015
Tính giá trị biểu thức
C=x^4-2014x^3+2014x^2-2014x+2014 tại x= 2013
Ta có: \(x=2013\Leftrightarrow x+1=2014\)
Thay vào ta được
\(C=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(C=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(C=1\)
Vậy C = 1
Tính P=x^4-2013x^3+2014x^2-2014x+2014 tai x=2013
cám ơn
cho a= x^2/y^2+2014z^2 =y^2/z^2 + 2014x^2 = z^2/x^2+2014y^2