Tìm GTLN của biểu thức 2-x^-y^-2(x+y)
Tìm GTLN của biểu thức :
(x^3+y^3)+3.(x^2+y^2) +10x
Bạn xem lại đề xem có thiếu điều kiện gì không. Biểu thức không như thế này thì không có cơ sở tìm max.
thiếu ạ
2(x^3+y^3)+3.(x^2+y^2) +10x
đó ạ
điều kiện là x + y + 4 = 0
Cho hai số x và y thỏa mãn điều kiện : 3*x + y =1
a, tìm GTNN của biểu thức M= 3*x^2 + y^2
b, Tìm GTLN của biểu thức N= x*y
Ta có: 3x + y = 1 => y = 1 - 3x
a, Thay y = 1 - 3x vào M, ta có:
\(\Rightarrow M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=3\left(4x^2-2x+\frac{1}{3}\right)\)
\(=3\left(4x^2-2x+\frac{1}{4}+\frac{1}{12}\right)=3\left(2x-\frac{1}{2}\right)^2+\frac{3}{12}=3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-\frac{1}{2}=0\\3x+y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=1-3x=1-3.\frac{1}{4}=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{4}\)
Vậy GTNN M = 1/4 khi x = y = 1/4
b, Thay y = 1 - 3x vào N
\(\Rightarrow N=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\frac{x}{3}+\frac{1}{36}-\frac{1}{36}\right)\)
\(=-3\left(x-\frac{1}{6}\right)^2-3.\left(-\frac{1}{36}\right)=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)
Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{6}=0\\3x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=1-3x=1-3.\frac{1}{6}=\frac{1}{2}\end{cases}}\)
Vậy GTLN N = 1/12 khi x = 1/6 và y = 1/2
Cho x>0,y>0 và x+y=2. Tìm GTLN của biểu thức P=x^2.y^2.(x^2+y^2)
đề bài cho x+y=2
vậy : \(\left(x+y\right)^2=4\) định lí Mori
\(P=x^2.y^2.\left\{\left(x+y\right)^2-2xy\right\}\)
mặt khác ta có
\(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow2xy\le\frac{\left(x+y\right)^2}{2}\)
suy ra
\(P\le x^2y^2\left\{\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\right\}\)
có x+y=2
\(\Rightarrow P\le x^2y^2\left(4-2\right)=2x^2y^2\)
ta lại có
\(2x^2y^2\le\frac{\left(x^2+y^2\right)^2}{2}=\frac{\left\{\left(x+y\right)^2-2xy\right\}^2}{2}\)
\(p\le\frac{\left(4-2xy\right)^2}{2}\)
có 2xy=2 ( cmr)
\(P\le\frac{\left(4-2\right)^2}{2}=2\)
vậy giá trị lớn nhất của P là 2 dấu = xảy ra khi x=y=1
a> Cho x + y + z = 3. Tìm GTLN của biểu thức x*y + y*z + z*x
b> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
cho x,y là hai số thực dương thỏa mãn đẳng thức x+y=2.Tìm GTLN của biểu thức M=x^2y^2(x^2+y^2)
a> Cho x + y = 1. Tìm GTNN của biểu thức: x^3 + y^3 + x^2 + y^2
b> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
c> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
dhgxkkkkkkkkkkkkkkkkkkkkk
a> Cho x + y = 1. Tìm GTNN của biểu thức: x^3 + y^3 + x^2 + y^2
b> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
c> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
Cho 2 số thực x, y thỏa mãn: x^2.+4y^2=20. Tìm GTLN của biểu thức: A=|x+y|
Áp dụng Bđt Bunhiacopxki vào 2 số \(x^2+4y^2\) và \(1+\dfrac{1}{4}\) có:
\(\left(x^2+4y^2\right)\left(1+\dfrac{1}{4}\right)\ge\left(x+y\right)^2=A^2\Rightarrow A^2\le25\Rightarrow A\le5\)
Dấu = xảy ra \(\Leftrightarrow\dfrac{x^2}{1}=\dfrac{4y^2}{\dfrac{1}{4}}\Leftrightarrow x^2=16y^2\Rightarrow x=4,y=1\)
Cho x , y E Z a) Với giá trị nào của x thì biểu thức A = 1000 - |x+5| có GTLN ; tìm GTLN đó .
b) Với giá trị nào của x thì biểu thức B = | y - 3 | + 50 có GTLN ; tìm GTLN đó
c) Với giá trị nào của x và y thì biểu thức C = | x - 100 | + | y +200 | - 1 có GTLN ; tìm GTLN đó .
Cho x+y+z=3,0=<x,y,z=<2 . Tìm GTLN của biểu thức A=x^2+y^2+z^2
Áp dụng BĐT Bunhiacopski ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=3^2=9\)
\(\Rightarrow x^2+y^2+z^2\ge3\Rightarrow A\ge3\)
Dấu "=" xảy ra khi x=y=z=1
Vậy MinA=3 khi x=y=z=1
(Bạn Thắng Nguyễn, đề yêu cầu tìm \(max\) mà...)
Đây là bài bất đẳng thức khó, vì \(maxA=5\) và đẳng thức xảy ra tại \(x=0,y=1,z=2\) (chẳng có BĐT nào làm được hết).
Lời giải đây: Đặt \(A=f\left(x,y,z\right)=x^2+y^2+z^2\) (coi như đa thức 3 biến)
Trong \(x,y,z\) phải có số lớn hơn hoặc bằng 1, giả sử là \(x\). Khi đó \(y+z\le2\).
\(f\left(x,y+z,0\right)=x^2+\left(y+z\right)^2\ge x^2+y^2+z^2=f\left(x,y,z\right)\)
Mà \(f\left(x,y+z,0\right)=f\left(x,3-x,0\right)=x^2+\left(3-x\right)^2=2x^2-6x+9\)
Và biểu thức này đạt giá trị lớn nhất tại \(x=2\) (giải thích: \(2x^2-6x+9=2\left|x-\frac{3}{2}\right|^2+\frac{9}{2}\))
Nên \(f\left(x,y,z\right)\le f\left(2,1,0\right)=5\). Đẳng thức xảy ra tại \(x=2,y=1,z=0\).
ấy chết, rảnh rỗi lật lại ms ngộ ra
bài này ngoài ra còn có thể sd BĐT karamata sẽ dễ nhìn hơn