Tìm giá trị nhỏ nhất của A
\(A=\frac{x+2x+3}{\left(x+2\right)^2}\)
Tìm giá trị nhỏ nhất của biểu thức:
A = \(\frac{\left(x^2+2x+3\right)\left(x^2+2x+9\right)}{x^2+2x+1}\)
Cho biểu thức \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
a/ Rút gọn biểu thức A
b/ Tìm giá trị lớn nhất - nhỏ nhất của A
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
a, Rút gọn B
b, Tính giá trị của B biết x=-2
c, Tìm x biết \(\left|B\right|-2x=5\)
d, Tìm giá trị nhỏ nhất của (2-x).B
e, Với giá trị nào của x thì B là số nguyên âm lớn nhất?
g, Tìm điều kiện của x để \(\left|B\right|+3< 2x-1\)
\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
\(< =>B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\frac{x.x}{x\left(x-2\right)}\right)\)
\(< =>B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}+\frac{x^2}{x\left(x-2\right)}\right)\)
\(< =>B=\frac{3x-4}{x\left(x-2\right)}:\frac{x^2-4+x^2}{x\left(x-2\right)}\)
\(< =>B=\frac{3x-4}{x\left(x-2\right)}.\frac{x\left(x-2\right)}{2x^2-4}\)
\(< =>B=\frac{3x-4}{2x^2-4}\)
\(b,\)Với \(x=-2\)thì
\(B=\frac{3\left(-2\right)-4}{2\left(-2\right)^2-4}=\frac{-6-4}{8-4}=-\frac{10}{4}=-\frac{5}{2}\)
\(ĐKXĐ:x\ne2;x\ne0\)
a
\(B=\left[\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right]:\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
\(=\frac{x-4+2x}{x\left(x-2\right)}:\frac{\left(x+2\right)\left(x-2\right)-x^2}{x\left(x-2\right)}\)
\(=\frac{3x-4}{x^2-4-x^2}=-\frac{3x-4}{4}\)
b
\(B=-\frac{3x-4}{4}=-\frac{3\cdot\left(-2\right)-4}{4}=\frac{5}{2}\)
c
\(\left|B\right|-2x=5\Leftrightarrow\left|B\right|=5+2x\)
\(B=-\frac{3x-4}{4}\Leftrightarrow-\frac{3x-4}{4}\ge0\Leftrightarrow x\le\frac{4}{3}\)
\(B=\frac{3x-4}{4}\Leftrightarrow x>\frac{4}{3}\)
Xét các trường hợp của x thì ra nghiệm bạn nhé
d
\(\left(2-x\right)B=-\frac{\left(2-x\right)\left(3x-4\right)}{4}\)
Để ( 2 - x ).B đạt giá trị nhỏ nhất thì ( 2 - x ) ( 3x - 4 ) đạt giá trị lớn nhất
Casio sẽ giúp chúng ta phần này
e
Để B là số nguyên âm lớn nhất hay \(B=-1\Leftrightarrow-\frac{3x-4}{4}=-1\Leftrightarrow x=\frac{8}{3}\)
g
\(\left|B\right|+3< 2x-1\)
Làm hệt như câu c nhé :D
\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)
ĐKXĐ : \(x\ne0,x\ne2\)
a) \(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{x\cdot x}{x\left(x-2\right)}\right)\)
\(B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4-x^2}{x\left(x-2\right)}\right)\)
\(B=\frac{3x-4}{x\left(x-2\right)}\cdot\frac{x\left(x-2\right)}{-4}\)
\(B=\frac{3x-4}{-4}=\frac{-3x+4}{4}\)
b) Thế x = -2 ( tmđk ) vào B ta được :
\(B=\frac{-3\cdot\left(-2\right)+4}{4}=\frac{10}{4}=\frac{5}{2}\)
c) \(\left|B\right|-2x=5\)
\(\Leftrightarrow\left|\frac{-3x+4}{4}\right|-2x=5\)
\(\Leftrightarrow\frac{-3x+4}{4}-2x=5\)
\(\Leftrightarrow\frac{-3x+4}{4}-\frac{8x}{4}=5\)
\(\Leftrightarrow\frac{-3x+4-8x}{4}=5\)
\(\Leftrightarrow\frac{-11x+4}{4}=5\)
\(\Leftrightarrow-11x+4=20\)
\(\Leftrightarrow-11x=16\)
\(\Leftrightarrow x=-\frac{16}{11}\)
Nhờ các bạn khác làm nốt ạ -.-
1. Tìm giá trị nhỏ nhất của các biểu thức
a) C= \(x^2+3\left|y-2\right|-1\)
b)D= x+|x|
2. Tìm giá trị lớn nhất của các biểu thức.
a) A= \(5-\left|2x-1\right|\)
b)B= \(\frac{1}{\left|x-2\right|+3}\)
3. Tìm giá trị lớn nhất của biểu thức \(C=\frac{x+2}{\left|x\right|}\)với x là số nguyên.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Tìm giá trị nhỏ nhất của A khi A=\(\frac{x^2+2x+3}{\left(x+2\right)^2}\)
Tìm giá trị lớn nhất hay giá trị nhỏ nhất của
\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\)
\(B=\frac{6}{5}-\left|2x+4\right|\)
=>\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\ge\frac{3}{8}\)
A đạt giá trị nhỏ nhất <=> \(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|=\frac{3}{8}\)
=>\(\left|x-\frac{1}{2}\right|=0\)
=>\(x-\frac{1}{2}=0\)
=>x=\(\frac{1}{2}\)
Vậy A đạt giá trị nhỏ nhất là \(\frac{3}{8}\) khi x=\(\frac{1}{2}\)
Vì \(\left|2x+4\right|\ge0\)=>\(B=\frac{6}{5}-\left|2x+4\right|\le\frac{6}{5}\)
B đạt giá trị lớn nhất <=> \(B=\frac{6}{5}-\left|2x+4\right|=\frac{6}{5}\)
<=>|2x+4|=0
<=>2x+4=0
<=>2x=-4
<=>x=-2
Vậy B đạt giá trị lớn nhất là \(\frac{6}{5}\) khi x=-2
a)tìm giá trị nhỏ nhất của biểu thức:
A= \(\left(2x+\frac{1}{3}\right)^4\)-1
b) Tìm giá trị lớn nhất của biểu thức :
B=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
e cái gì là em bé à
1/ Cho x + y = 2
Chứng minh xy nhỏ hơn hoặc bằng 1.
2/
a) Tìm giá trị lớn nhất của \(A=3-\left(\frac{4}{9}x+\frac{2}{15}\right)^6.\)
b) Tìm giá trị lớn nhất của \(B=2,25-\frac{1}{4}\left(1+2x\right)^2.\)
c) tìm giá trị lớn nhất của \(C=\frac{1}{3+\frac{1}{2}\left(2x-3\right)^4}.\)
Mik đg cần gấp ai làm nhanh và đúng nhất mik sẽ tik cho 3 cái!
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
1) Tìm giá trị nguyên của biến x để biểu thức
a, A=\(\frac{2}{6-x}\) có giá trị lớn nhất
b,B=\(\frac{8-x}{x-3}\) có giá trị nhỏ nhất
2)Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau
a,\(\left|x-2\right|+\left|x+3\right|\)
b,\(\left(2x^2+3\right)^2-4\)
c, \(4x^2-4x+3\)