Tinh gia tri cua A biet 1.2.3+2.3.4+3.4.5+......+98.99+99.100
Tinh gia tri cua A biet 1.2.3+2.3.4+3.4.5+.....+98.99+99.100
Đáp án là
99 x 100 x 101 = 999900
Vậy A = 999900
tinh gia tri cua bieu thuc B=1.2.3+2.3.4+3.4.5+5.6.7+...+17.18.19
\(\frac{\left(1.2+2.3+3.4+.....+98.99\right)y}{1}=184800\) tim y
2\ \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....\frac{1}{37.38.39}\right).1428+185,8\) tinh gia tri cua bieu thuc tren
1) Đặt \(A=1.2+2.3+3.4+....+98.99\)
Ta có:\(3A=3.\left(1.2+2.3+3.4+....+98.99\right)\)
\(3A=1.2.3+2.3.3+3.4.3+....+98.99.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+....+98.99.\left(100-97\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+98.99.100-97.98.99\)
\(3A=98.99.100\Rightarrow A=\frac{98.99.100}{3}=323400\)
Ta có:\(\frac{A.y}{1}=184800\Rightarrow y=184800:323400=\frac{4}{7}\)
2)Đặt \(A=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\right).1428+185,8\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{37.38.39}\)
Tổng quát:\(\frac{2}{\left(a-1\right)a\left(a+1\right)}=\frac{1}{\left(a-1\right)a}-\frac{1}{a\left(a+1\right)}\)
Ta có:
\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.....+\frac{2}{37.38.39}\)
\(2B=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\left(\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(2B=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\Rightarrow B=\frac{370}{741}:2=\frac{185}{741}\)
Khi đó \(A=\frac{185}{741}.1428+185,8=...........\) (tự tính ra)
(*)số ko đẹp mấy
Tinh gia tri cac bieu thuc sau
D= \(\frac{30}{1.2.3}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)
\(D=\frac{30}{1.2.30}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)
\(=15.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(=15.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=15.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=15.\frac{8249}{9900}=\frac{8249}{660}\)
\(D=\frac{30}{1.2.3}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)
\(=15\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(=15\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=15\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=15.\frac{4949}{9900}=\frac{4949}{660}\)
Vậy \(D=\frac{4949}{660}\).
\(D=\frac{30}{1.2.3}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)
\(D=15.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(D=15.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(D=15.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(D=15.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(D=15.\frac{4949}{9900}\)
\(D=\frac{4949}{660}\)
1/1.2.3 +1/2.3.4+1/3.4.5+...+1/98.99.100 = ( 1/k . 1/99.100)
Tính gt củabt sau:
,A=1/1.2.3+1/2.3.4+1/3.4.5+...+1/98..99.100
Tính giá trị của biểu thức :
a = 1.2+2.3+3.4+........+99.100
c = 1.2.3+2.3.4+3.4.5+.....+49.50.51
A = 1.2 + 2.3 + ... + 99.100
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
3A = 999900
A = 333300
C = 1.2.3 + 2.3.4 + ... + 49.50.51
4C = 1.2.3.4 + 2.3.4.(4-1) + ... + 49.50.51.(52-48)
4c = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 49.50.51.52 - 48.49.50.51
4C = 49.50.51.52
4C = 6497400
C = 1624350
Ta có :
a=1.2+2.3+3.4+...+99.100
3a=1.2.3+2.3.3+3.4.3+...+99.100.3
3a=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3a=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3a=99.100.101
a=\(\frac{99.100.101}{3}\)
a=333300
Tính c làm tương tự
a = 1.2 + 2.3 + 3.4 + ... + 99.100
3a = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
3a = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100. (101 - 98)
3a = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3a = 99 . 100 . 101
3a = 3 . 33 . 100 . 101
a = 33 . 100 . 101
a = 333300
Tính:
f) F= 1.2+2.3+3.4+...+n(n+1)
g) G= 1.2.3+2.3.4+3.4.5+...+99.100.101
h) H= 1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
i) I= 1.3+2.4+3.5+...+99.100
j) J= 1.4+2.5+3.6+...+99.102
A = 1/2.3.4 +1/2.3.4.5 + 1/3.4.5.6 + ... +1/47.48.49.50
B= 1/1.2+1/1.2.3 - 1/2.3.4 + 1/.3.4 -1/3.4.5 ... +1/99.100 - 1/99.100.101