cho biết ab + cd chia hết cho 11. bạn hãy chứng minh rằng số abcd chia hết cho 11
1. Chứng minh rằng nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
2. a, Chứng minh rằng số có dạng abcabc chia hết cho 7,11,13
b, Áp dụng câu a ko thực hiện phép chia hãy cho biết trong các số sau số nào chia hết cho 7, số nào chia hết cho 11, số nào chia hết cho 13 .272283,236243,579572
3. Chứng minh rằng nếu ab=cd*3 thì abcd chia hết cho 43
4. Cho abc+deg chia hết cho 37 . Chứng minh abcdeg chia hết cho 37
giải ra giùm mình nhé
ai trả lời được mình k cho
chứng minh rằng :nếu ab+cd chia hết cho 11 thì abcd cũng chia hết cho 11(biết rằng ab; cd là số tự nhiên có hai chữ số;abcd là số tự nhiên có 4 chữ số
abcd=100ab+cd=99ab+ab+cd
99ab chia hết cho 11;ab+cd chia hết cho 11
=>abcd chia hết cho 11
=>đpcm
abcd=100ab+cd=99ab+ab+cd
99ab chia hết cho 11;ab+cd chia hết cho 11
=>abcd chia hết cho 11
=>đpcm
abcd=100ab+cd=99ab+ab+cd
99ab chia hết cho 11;ab+cd chia hết cho 11
=>abcd chia hết cho 11
=>đpcm
Chứng minh rằng tổng ab+cd chia hết cho 11 thì số abcd chia hết cho 11
abcd = ab . 100 + cd
= ab . 99 + ab + cd
= ab . 11 . 9 + ( ab + cd )
Vì ab . 11 .9 chia hết cho 11 nên ab + cd chia hết cho 11 thì abcd cũng vậy.
Các bạn hãy chứng minh rằng nếu ab+cd+eg chia hết cho 11 thì abcdeg cũng chia hết cho 11.
nếu ab+cd+eg chia hết cho 11 ta sẽ có như sau:
abcdeg=ab.10000+cd.100+eg.1 Ta lại có như sau
ab.10000+100.cd+eg.1 - ab+cd+eg =ab.9999+cd.99 mà 9999chia hết cho 11 và 99 chia hết cho 11 nên khi ab+cd+eg chia hết cho 11 thì abcdeg cũng chia hết cho 11 .
đúng ko . đúng xin một lời nói đúng vào trang của mình
Chứng minh rằng ab+cd chia hết cho 11 thì abcd chia hết cho 11
ta có: abcd=100.ab+cd=99.ab+(ab+cd)=11.9.ab+(ab+cd)
vì ab+cd chia hết cho 11;11.9.ab chia hết cho 11
vậy ab+cd chia hết cho 11 thì abcd chia hết cho 11
. là dấu nhân nhé
CHÚC BẠN HỌC TỐT
ta có
abcd= ab.100 + cd
= ab.99 + ab + cd
= ab.99 +( ab + cd)
do ab.99= ab.9.11 chia hết cho 11
và theo bài ra ta có ab + cd chia hết cho 11
vậy suy ra :
ab.99 +( ab + cd) chia hết cho 11
suy ra abcd chia hết cho 11
Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha
Chứng minh rằng ab+cd chia hết cho 11 thì abcd chia hết cho 11
abcd-(ab+cd)=99.ab chia hết cho 11
=> abcd chia hết cho 11
Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha
cho ab+cd+eg chia hết cho 11
a, chứng minh rằng abcdeg chia hết cho 11
b, cho abcdeg chia hết cho 11 . Chứng minh rằng ab+cd+eg chia hết cho 11
a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11
b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11
chứng minh rằng nếu ( ab + cd) chia hết cho 11 thì abcd chia hết cho 11
(có gạch ngang trên đầu)
hãy chứng minh rằng:
Nếu (ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11
abcdef = ab . 10000 + cd .100 + ef
= (ab . 9999 + cd . 99) +( ab + cd + ef)
= 11. (ab . 909 + cd . 9) +( ab + cd + ef)
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11
mà theo bài ra ab + cd + ef
Chia hết cho 11
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + ef)
hay : abcdef