CMR: biểu thức sau không là lập phương của một số tự nhiên: 10150 +5.1050+1
1) CMR biểu thước sau ko là lập phương của 1 số tự nhiên :
10150 + 5.1050 + 1
2) CMR: tích của 3 số tự nhiên liên tiếp ko là lập phương của một số tự nhiên
3) CMR : với mọi số tự nhiên a , tồn tại số tự nhiên b sao cho : ab + 4 là số chính phương
Chứng minh rằng biểu thức sau không là lập phương của một số tự nhiên: 10150+5.1050+1
Chứng minh rằng biểu thức sau không là lập phương của 1 số tự nhiên
\(10^{150}+5.10^{50}+1\)
ta có : (10^50)^3<10^150+5*10^50+1<10^150+3*(10^50)^2+3*10^50+1= (10^50+1)^3
vay10^150+5*10^50+1 khong la lap phuong cua 2 so tu nhien
Tham khảo .
Ta có :
\(\left(10^{53}\right)^3< 10^{150}+5.10^{50}+1< 10^{150}+3.\left(10^{50}\right)^2+1\)
\(=\left(10^{50}+1\right)^3\)
Vậy \(10^{150}+5.10^{50}+1\)không là lập phương của 1 số tự nhiên
đpcm
Chứng minh biểu thức sau không phải là lập phương của một số tự nhiên:
19913333 + 19902222 + 19891111
Chứng minh rằng biểu thức sau không thể là lập phương của 3 số tự nhiên 1991^3333+1990^2222+1981^1111
cho A= (10^n + 10^n-1 + ... + 10 + 1)(10^n+1 + 5)+1
CMR A là só chính phương nhưng A không là lập phương của một số tự nhiên
Số tự nhiên được viết bởi 1 chữ số 1, 2 chữ số 2,ba chữ số 3,...,chín chữ số 9 , có thể là lập phương của 1 số tự nhiên không?
CMR : tồn tại một số là bội của 19 có tổng các chữ số bằng 19.
CMR: 2 số lẻ liên tiếp nguyên tố cùng nhau
câu cmr tồn tại 1 số là bội của 19 có tổng các chữ số là 19:
tồn tại số là bội của 19 có tổng các chữ số là 19. VD: 874
Với mọi n là số tự nhiên khác 0, chứng minh biểu thức
\(A_n=n+\left[\sqrt[3]{n-\frac{1}{27}}+\frac{1}{3}\right]^2\)không viết được dưới dạng lập phương của một số nguyên dương
CMR: các số tự nhiên có dạng 2p+1 trong đó p là số nguyên tố chỉ có một số lập phương của 1 số tự nhiên khác . tìm số đó
Ta đặt số cần tìm là 2p + 1 = k³ ( k ∈ N )
<=> 2p = k³ - 1
<=> 2p = ( k - 1 )( k² + k + 1 )
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p. Mà k² + k + 1 = k( k + 1 ) + 1, k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.
=>{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.
Ta đặt số cần tìm là 2p + 1 = k³ ( k ∈ N )
<=> 2p = k³ - 1
<=> 2p = ( k - 1 )( k² + k + 1 )
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p. Mà k² + k + 1 = k( k + 1 ) + 1, k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.
=>{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.