Cho các số nguyên x và y thỏa mãn 4x+5y=7. Tìm giá trị nhỏ nhất của biểu thức B = 5|x|-3|y|
Cho các số nguyên x và y thỏa mãn 4x+5y= 7. tìm giá trị nhỏ nhất của biểu thức: B=5|x| -3|y|
Cho các số nguyên x và y thỏa mãn 4x+5y= 7. tìm giá trị nhỏ nhất của biểu thức: B=5|x| -3|y|
4x+5y=7
4x+5y=7 (x, y nguyen)=>y=3-4n; x=5n-2
B(n)=5I5n-2I-3I4n-3I
B(0)=5.2-3.3=1
B(1)=5.3-3.1=12
B(-1)=5.7-3.7=14 (cho an toan, thuc ra chi can b(0)&b(1) la du)
Min(b)=1 khi x=-2, y=3
Cho các số nguyên x và y thỏa mãn 4x+5y= 7. tìm giá trị nhỏ nhất của biểu thức: B=5|x| -3|y|
Cho các số nguyên x và y thỏa mãn 4x+5y=7. Tìm giá trị nhỏ nhất của biểu thức B = 5|x|-3|y|
các cao thủ giúp mình với :)
Cho các số nguyên x,y thỏa mã 4x+5y=7. Tìm giá trị nhỏ nhất của biểu thức B=5lxl-3lyl
1)CÁC GIÁ TRỊ CỦA X;Y THUỘC Q THỎA MÃN |X-7/5|+|2,4-Y| LỚN HƠN HOẶC BẰNG 0. TÌM X;Y
2)GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC B=|4X-3|+|5Y+7,5|+17,5
3) GIÁ TRỊ CỦA BIỂU THỨC B=(1000-1^3).(1000-2^3).(1000-3^3).........(1000-50^3)
4)CÁC SỐ X,Y,Z THỎA MÃN (3X-5)^2006+(Y^2-1)^2008+(X-Z)^2100=0 LÀ ?
1.Tìm các số nguyên x và y thỏa manc 6xy+4x-9y-7=0
2.Tìm giá trị nhỏ nhất của biểu thức A=x3+y3+xy,trong đó x,y là các số dương thỏa mãn điều kiện x+y=1
Tìm x,y thuộc Z thỏa mãn 4x+5y=7 và trong các cặp số x,y tìm được hãy tìm cặp số x,y để M=5.|x|-3.|y| có giá trị nhỏ nhất
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)