Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Mai Lệ
Xem chi tiết
Tuấn Minh Phan Nguyễn
Xem chi tiết
Nguyễn Thị Minh
22 tháng 11 2016 lúc 10:39

la so 77071067812

Nguyễn Thị Mỹ Duyên
Xem chi tiết
Lê Quỳnh Hương
Xem chi tiết
Phạm Thùy Linh
Xem chi tiết
Bùng nổ Saiya
Xem chi tiết
Nguyễn Hoài Oanh
13 tháng 8 2017 lúc 16:22

Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

Bùng nổ Saiya
13 tháng 8 2017 lúc 16:28

sai rồi bạn ơi mik làm đc rồi

Nguyễn Phan Quỳnh Hương
Xem chi tiết
Nguyen Manh Cuong
12 tháng 11 2015 lúc 21:57

a)

can bac 2 cua 2 =1,4142...

b)

can bac 2 cua 3 =1,73205...

c)

can bac 2 cua 2 + can bac 2 cua 3 =3,1462...

tap hop so vo ti gom: so vo han tuan hoan,so vo han khong tuan hoan

1 TIK nha !

Hiền Ngố
Xem chi tiết
Akai Haruma
31 tháng 7 lúc 13:02

Lời giải:
Giả sử $\sqrt{7}\in\mathbb{Q}$. Đặt $\sqrt{7}=\frac{a}{b}$ với $a,b$ nguyên, $b\neq 0$, $(a,b)=1$.

Ta có:

$7=\frac{a^2}{b^2}$

$\Rightarrow a^2=7b^2\vdots 7\Rightarow a\vdots 7\Rightarrow a^2\vdots 49$

$\Rightarrow 7b^2=a^2\vdots 49\Rightarrow b^2\vdots 7$

$\Rightarrow b\vdots 7$

Vậy $7=ƯC(a,b)$ (trái với điều kiện $(a,b)=1$)

Do đó điều giả sử là sai. Tức là $\sqrt{7}$ là số vô tỉ.

ăn nữa ăn mãi ăn không c...
Xem chi tiết
Đinh Phương Nga
24 tháng 3 2016 lúc 21:27

 Giả sử căn bậc 2 của 2 là 1 số hữu tỉ
Vậy căn 2 = a/b 
với a,b thuộc Z, b khác 0 và a/b là 1 phân số tối giản. 
bình phương hai vế ta được: 2=a^2/b^2 
suy ra: a^2=2b^2 
Vậy a^2 là số chẵn, suy ra a là số chẵn. 
nên a=2m, m thuộc Z(m là 1 tham số), ta được: 
(2m)^2=a^2=2b^2 
suy ra: b^2=(2m)^2/2=2m^2 
Vậy b^2 là số chẵn suy ra b là số chẵn. 
nên b=2n, n thuộc Z(n là tham số) 
Như vậy: a/b = 2m/2n ko phải là phân số tối giản, trái với giả sử ban đầu. 
Vậy căn bậc 2 của 2 là 1 số vô tỉ.