Cho a+b=2
CMR : \(\sqrt[3]{a}+\sqrt[3]{b}\le2\)
Cho \(a,b>0:a+b\le2\).Tìm max: P=\(\sqrt{a\left(b+3\right)}+\sqrt{b\left(a+3\right)}\)
\(P=\dfrac{1}{2}\sqrt{4a\left(b+3\right)}+\dfrac{1}{2}\sqrt{4b\left(a+3\right)}\)
\(P\le\dfrac{1}{4}\left(4a+b+3\right)+\dfrac{1}{4}\left(4b+a+3\right)\)
\(P\le\dfrac{1}{4}\left(5a+5b+6\right)\le\dfrac{1}{4}\left(5.2+6\right)=4\)
\(P_{max}=4\) khi \(a=b=1\)
Cho a,b,c>0 .Cmr:
\(\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc}\le2\left(a+b+c\right)\)
Cho x, y, z > 0. CMR :
\(\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc}\le2\left(a+b+c\right)\)
Ta có:
\(VT^3=\left(\sqrt[3]{\sqrt{a}.\sqrt{a}.\left(a^2+7bc\right)}+\sqrt[3]{\sqrt{b}.\sqrt{b}.\left(b^2+7ca\right)}+\sqrt[3]{\sqrt{c}.\sqrt{c}.\left(c^2+7ab\right)}\right)^3\)
\(\le\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\left(a^2+b^2+c^2+7ab+7bc+7ca\right)\)
\(\le3\left(a+b+c\right)\left[\left(a+b+c\right)^2+\frac{5}{3}\left(a+b+c\right)^2\right]\)
\(=8\left(a+b+c\right)^3\)
\(\Rightarrow VT\le2\left(a+b+c\right)\)
Cho x, y, z > 0. CMR :
\(\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc}\le2\left(a+b+c\right)\)
Lời giải:
Áp dụng BĐT Holder:
\((\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc})^3\leq (a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)(1+1+1)\)
\(\Leftrightarrow (\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc})^3\leq 3(a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)\)
Ta cần chứng minh:
\(3(a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)\leq 8(a+b+c)^3\)
\(\Leftrightarrow 3(a^2+7bc+b^2+7ac+c^2+7ab)\leq 8(a+b+c)^2(*)\)
Thật vậy:
Theo hệ quả của BĐT AM-GM thì \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}\)
Do đó:
\(3(a^2+7bc+b^2+7ac+c^2+7ab)=3[(a+b+c)^2+5(ab+bc+ac)]\)
\(\leq 3[(a+b+c)^2+\frac{5}{3}(a+b+c)^2]=8(a+b+c)^2\)
\((*)\) đúng, ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
Cho hai số a,b thỏa mãn a+b=2
Cmr \(0< \sqrt[3]{a}+\sqrt[3]{b}\le2\)
Lời giải:
Đặt \(\sqrt[3]{a}=x; \sqrt[3]{b}=y\). Khi đó ta có $x^3+y^3=2$ và cần chứng minh \(0< x+y\leq 2\).
Thật vậy.
Ta thấy: \(x^3+y^3=2>0\)
\(\Leftrightarrow (x+y)(x^2-xy+y^2)>0(1)\)
Mà \(x^2-xy+y^2=(x-\frac{y}{2})^2+\frac{3y^2}{4}\geq 0(2)\)
Từ $(1)$ và $(2)$ suy ra \(x+y>0\)
Lại có:
\(4(x^3+y^3)-(x+y)^3=3(x^3+y^3)-3(x^2y+xy^2)\)
\(=3[x^2(x-y)-y^2(x-y)]=3(x-y)^2(x+y)\)
Vì $x+y>0$ (cmt) và $(x-y)^2\geq 0$ nên \(4(x^3+y^3)-(x+y)^3\geq 0\)
\(\Rightarrow 4(x^3+y^3)\geq (x+y)^3\) hay \(8\geq (x+y)^3\Rightarrow x+y\leq 2\)
Ta có đpcm.
Cho \(a,b,c,d>0,a+b+c+d=1\). Chứng minh \(\sqrt{a+b+c}+\sqrt{b+c+d}+\sqrt{a+c+d}+\sqrt{a+b+d}\le2\sqrt{3}\)
Đặt 4 căn thức lần lượt là \(\left(x;y;z;t\right)\)
\(\Rightarrow x^2+y^2+z^2+t^2=3\)
Ta cần chứng minh: \(x+y+z+t\le2\sqrt{3}\)
Áp dụng BĐT Bunhiacopxki:
\(\left(x+y+z+t\right)^2\le\left(1+1+1+1\right)\left(x^2+y^2+z^2+t^2\right)=12\)
\(\Rightarrow x+y+z+t\le2\sqrt{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{1}{4}\)
P/s: việc đặt chỉ để viết cho ngắn, còn thực chất bạn áp dụng luôn Buniacopxki cho 1 dòng cũng được
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
CMR với bất kì các số thực dương a,b,c sao cho a+b+c=ab+bc+ac , bất đẳng thức sau đây xảy ra :
\(3+\sqrt[3]{\dfrac{a^3+1}{2}}+\sqrt[3]{\dfrac{b^3+1}{2}}+\sqrt[3]{\dfrac{c^3+1}{2}}\le2\left(a+b+c\right)\)
Cho a + b = 2. Chứng minh rằng:
\(\sqrt[3]{a}+\sqrt[3]{b}\le2\)
Giúp mình với!!!
Có \(a+1+1\ge3\sqrt[3]{a}\)
\(b+1+1\ge3\sqrt[3]{b}\)
\(\Rightarrow a+b+1+1+1+1\ge3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)
\(\Rightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\le6\)
\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}\le2\)
"=" tại a=b=1