Tính :
A= 11*3^29-9^15
(2*3^14)^2
Cho S = 1+3^2+3^4+.....+3^98
Tìm S và chứng minh Schia hết cho 10
Cho : S = 3^0+3^2+3^4+3^6+..........+3^2002
a Tính S
b Chứng minh rắng Schia hết cho 7
Đấm vào chữ ĐÚNG giùm em ạ,
Ai bấm là người đẹp zai,xinh gái,quyến rũ....vv
Nói chung là rất đẹp
xin tick giùm em
S=1+2+4+...+512
ko tính S chứng minh Schia hết cho 3
mình ko biết bởi vì mình mới học lớp 1
Cho S= 1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9.Chứng tỏ rằng Schia hết cho 4
\(S=1+3+3^2+...+3^9\)
Ta có: \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^8+3^9\right)\)
\(S=4+3^2.\left(1+3\right)+...+3^8.\left(1+3\right)\)
\(S=4+3^2.4+...+3^8.4\)
\(S=4.\left(1+3^2+...+3^8\right)\)
Vì \(4⋮4\) nên \(4.\left(1+3^2+...+3^8\right)⋮4\)
Vậy \(S⋮4\).
\(#NqHahh\)
1,tính nhanh
A=1.3+3.5+5.7+...+97.99
2,Trong đợt thi đua lớp 6a có 35 bạn đạt 1 ddieerm10 trở lên, 28 bạn đạt 2 điểm 10 trở lên.9 bạn đạt 4 điểm 10,không bạn nào đạt trên 4 điểm 10.hỏi lớp 6a trong đợt thi đua đó đạt được bao nhiêu điểm 10?
3, đổi 185 sang hệ cơ số 5
đổi 2434(6) sang hệ cơ số 9
4,S=2+2^2+2^3+...+2^100
chứng minh :Schia hết cho 6 ,S chia hết cho 14, Schia hết cho 30, Schia hết cho31
5,tìm x thuộc z:
2x-5 chia hết cho 6-x
(x-1).(y-2)=9
x.y=180,BCNN(x,y)=20(x,y)
ĐỀ KIỂM TRA 45 PHUT CHIỀU CỦA MÌNH ĐẤY!NGỒI SUỐT 2 TIẾNG MÀ MỚI LÀM ĐƯỢC VÀI BÀI.
Chứng minh rằng (11.12.13+114.115.116+1117.1118.1119) chia hết cho 3
Bài 2 chứng minh rằng:
a) S=7^2 +7^3+7^4+...+7^60
Schia hết cho 8
b)A=a+a^2+a^3+a^4+...+4^24
A chia hết cho a+1 (a C N)
1/ ta có :
11.12.13+ 114.115.116+ 1117.1118.1119= 11.3.4.13+ 3.38.115.116+ 1117.1118.3.373
= 3(11.4.13+ 38.115.116+ 1117.1118.373 ) chia hết cho 3 => đpcm
2/ a)(mik nghĩ là bn nhầm, nếu 7^2 +...+ 7^60 chia hết cho 8 thì chắc chắn là sai hoàn toàn, nên mik sửa đề) ta có :
S = \(7+7^2+7^3+7^4+7^5+...+7^{59}+7^{60}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)+...+\left(7^{59}.7^{60}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{59}.8\)
\(=8\left(7+7^3+...+7^{59}\right)⋮8\)(đpcm)
b) \(A=a+a^2+a^3+a^4+...+a^{23}+a^{24}\)
\(=\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{23}+a^{24}\right)\)
\(=a\left(1+a\right)+a^3\left(1+a\right)+...+a^{23}\left(1+a\right)\)
\(=\left(1+a\right)\left(a+a^3+...+a^{23}\right)⋮\left(a+1\right)\)(đpcm)
Nhớ kb với mik nha!
cần gấp thì làm đi hỏi người khác thầy cô chỉ cho
Cho S=3^0+3^2+3^4+3^6+.......+3^2002. A,TinhS.B,Chứng minh Schia hết cho 7
*S với 3^2 ta dược;
9S=3^2+3^4+...+3^2002+3^2004
\(\Rightarrow\)9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+3^2002)
Ta có:S la số nguyên nên phải chung minh 3^2004-1 chia hết cho 7
ta có:3^2004-1=(3^6)^334-1=(3^6-1).M=7.104.M
\(\Rightarrow\)3^2004 CHIA hết cho 7 mặt khác ucln(7;8)=1 nen S CHIA HẾT CHO 7
1/tìm số tự nhiên nhỏ nhất biết rằng số đó chia cho9 dư 5,chia 5 dư 3,chia 7 dư 4
2/cho S=2^1+2^+2^3+...+2^100
A,chứng minh rằng Schia hết cho 15
B,tìm số tận cùng của S
C,tính tổng S
3/chứng minh rằng
A,1-1/2+1/3-/4+...+1/199-/200=1/101+1/102+1/103+...+1/200
B,51/2*52/2*...*100/2=1*3*5*99
các bạn giúp mình nha!ai trả lời trước mình tick
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
cho S=4+4 mũ 2+4 mũ 3 +.....+4 mũ 2016 .chứng minh rằng Schia hết cho 420
1. Thực hiện tính :
a, ( 3^2016 + 3^2015 ) : 3^2015
b, ( 14^50 + 14^49 ) : 14^48
c, 7^76 + 51.7^74 / 7^75 - 3.7^74 ( / là chỉ phân số )
d, 0 - 1 + 2 - 3 + 4 - 5 + 6 - 7 +...+ 102
2. Tìm x, biết:
x^5 = x^3
3. Tìm số abcde, biết:
abcde . 9 = edcba
4. Tìm x,y để:
a, 1x85y chia hết cho 2 ; 3 ; 5
b, 10xy5 chia hết cho 45.
c, 2x3y chia hết cho 2 ; 5 và chia cho 9 dư 1
5. Chứng minh:
a, ( 10^3 + 8 ) chia hết cho 18
b, ( 10^10 + 14 ) chia hết cho 6
c, Cho ( ab + cd + eg ) chia hết cho 11 thì abcdeg chia hết cho 11
d,Cho abc = 2.deg. Chứng minh: abcdeg chia hết cho 23 ; 29.
e, Cho abc chia hết cho 27. Chứng minh: bca chia hết cho 27.
Giải giúp mình với nha mọi người.
Bài 2:
\(x^5=x^3\)
\(\Rightarrow x^5-x^3=0\)
\(\Rightarrow x^3\left(x^2-1\right)=0\)
\(\Rightarrow x^3=0\) hoặc \(x^2-1=0\)
+) \(x^3=0\Rightarrow x=0\)
+) \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\) hoặc \(x=-1\)
Vậy \(x\in\left\{0;1;-1\right\}\)