chứng tỏ rằng 102017 + 2016 không chia hết cho 3
chứng tỏ rằng : 10 2017 + 2016 không chia hết cho 3
Ta có : 102017 = 100....00 ( 2017 chữ số 0 )
1000......00 ( 2017 chữ số 0 ) + 2016 = 1000....02017 ( 2013 chữ số 0 )
Tổng các chữ số 10.....002017 là :
1 + 0 + 0 + 0 +......+ 0 + 2 + 0 + 1 + 7 = 13
Mà 13 không chia hết cho 3
=> 102017 + 2016 không chia hết cho 3
Ta có : 102017 = 100....00 ( 2017 chữ số 0 )
1000......00 ( 2017 chữ số 0 ) + 2016 = 1000....02017 ( 2013 chữ số 0 )
Tổng các chữ số 10.....002017 là :
1 + 0 + 0 + 0 +......+ 0 + 2 + 0 + 1 + 7 = 13
Mà 13 không chia hết cho 3
=> 102017 + 2016 không chia hết cho 3
Chứng tỏ rằng: 102016 + 2015 chia hết cho 3
cho S = 3+3^2+3^3+....+3^2016
chứng tỏ S chia hết cho 13
chứng tỏ S chia hết cho 40
cho biết a,b là các số tự nhiên thỏa mãn 3a+2b chia hết cho 17 chứng tỏ rằng 10a+b chia hết cho 17
nhanh nhé 1goiwf chiều mình phải đi học rồi
s= 3+32+33+ ...+ 32016
= ( 3+32+33) + .....+( 32014+ 32015+32016)
= 3( 1+3+32)+.....+ 32014.( 1+3+32)
= (3+....+32014)(1+3+32)
= (3+....+32014)13 chia hết cho 13
câu còn lại nhốm 4 số nha
vì 3a+2b chia hết cho 17 nên (3a+2b)10 chia hết cho 17
ta có 10( 3a+2b) - 3( 10a+b) = 30a + 20b-30a-3b=17b chia hết cho 17
=> 3( 10a+b) chia hết cho 17
=> 10a+b chia hết cho 17
chứng tỏ rằng 102016+ 2015 chia hết cho 3
chứng tỏ rằng : 2 mũ 2018 - 2 mũ 2016 chia hết cho 3
= 2 mũ 2018 - 2 mũ 2016
=2 mũ 2016 . 2 mũ 2 - 2 mũ 2016
=2 mũ 2016.(2 mũ 2 - 1)
=2 mũ 2016.(4 -1 )
=(2 mũ 2016.3) chia hết cho 3
Vậy:2 mũ 2018 - 2 mũ 2016 chia hết cho 3
Chứng tỏ rằng số tự nhiên A viết bởi 2016 chứ số 5 là :
A= 555....5 (2016 chữ số 5)thì A không chia hết cho 25
vì 55 không chia hết cho 25 thôi chứ còn sao
Trang và lạnh dè thôi.chửi nhau cẩn thận đấy.kẻo bị trừ điểm há há há
a, Chứng tỏ rằng (7^n + 1) . (7^n + 2) chia hết cho 3 và mọi số tự nhiên
b, Chứng tỏ rằng không tồn tại các số tự nhiên x,y,z sao cho : (x+y) . (y+z) . (z+x) + 2016 = 2017^2018
a, Nếu n = 2k ( k thuộc N ) thì : 7^n+2 = 49^n+2 = [B(3)+1]^n+2 = B(3)+1+2 = B(3)+3 chia hết cho 3
Nếu n=2k+1 ( k thuộc N ) thì : 7^n+2 = 7.49^n+2 = (7.49^n+14)-12 = 7.(49^n+2)-12 chia hết cho 3 ( vì 49^n+2 và 12 đều chia hết cho 3 )
=> (7^n+1).(7^n+2) chia hết cho 3 với mọi n thuộc N
Tk mk nha
b, Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y)(y + z)(z + x) chia hết cho 2
=> (x + y)(y + z)(z + x) + 2016 chia hết cho 2 (vì 2016 chia hết cho 2)
Mà 20172018 không chia hết cho 2
Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài
Chứng tỏ rằng:\(10^{2016}\)+89 chia hết cho 9
Vì tổng các số của 102016 và 89 ⋮ 9
102016 + 89
= 100...0 + 89
Tổng các chữ số của chúng là :
1 + 0 + 0 + ... + 0 + 8 + 9
= 1 + 8 + 9
= 18 chia hết cho 9
a, chứng tỏ rằng 2 số 9n + 7 và 4n +3 là 2 số nguyên tố cùng nhau
b, chứng minh rằng với mọi số tự nhiên n thì n2 + n + 2016 không chia hết cho 5