Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Thi Nhuong
Xem chi tiết
Kudo shinichi
Xem chi tiết
Nguyễn Anh Quân
3 tháng 11 2017 lúc 15:07

Bạn ơi bài này phải cho thêm điều kiện n thuộc Z 

Đặt n^2+2006 = k^2 ( k thuộc N sao)

<=> -2006 = n^2-k^2 = (n-k).(n+k)

<=> n-k thuộc ước của -2006 ( vì n thuộc Z , k thuộc N sao nên n-k và n+k đểu thuộc Z)

Mà k thuộc N sao nên n-k < n+k

Từ đó, bạn tự giải bài toán nhưng nhớ kết hợp cả điều kiện n-k<n+k 

pham_duc_lam
3 tháng 11 2017 lúc 15:08

Kết quả hình ảnh cho hình ảnh luffyđẹp chưa?

Sakuraba Laura
2 tháng 12 2017 lúc 5:04

Vì n2 là số chính phương

\(\Rightarrow\) n2 chia cho 4 dư 0 hoặc 1

Mà 2006 chia cho 4 dư 2

\(\Rightarrow\) n2 + 2006 chia cho 4 dư 2 hoặc 3

\(\Rightarrow\) n2 + 2006 không là số chính phương (vì số chính phương chia cho 4 dư 0 hoặc 1)

\(\Rightarrow\) Không có số n thỏa mãn đề bài.

Châu Anh
Xem chi tiết
Huỳnh Thị Minh Huyền
9 tháng 12 2015 lúc 18:08

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006

<==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn

==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

Dương Thu Thảo
Xem chi tiết
Akai Haruma
25 tháng 2 2023 lúc 23:35

Lời giải:

Đặt $n+1995=a^2, n+2014=b^2$ với $a,b\in\mathbb{N}$

Khi đó:

$(n+2014)-(n+1995)=b^2-a^2$

$\Leftrightarrow 19=b^2-a^2=(b-a)(b+a)$

Vì $b,a$ là 2 số tự nhiên nên $b+a> b-a$. Vì $b+a>0, (b+a)(b-a)=19>0$ nên $b-a>0$

Suy ra $b+a=19; b-a=1$

$\Rightarrow b=10$

$\Rightarrow n+2014=b^2=10^2=100\Rightarrow n=-1914$

aaaa
Xem chi tiết
hiki Phan
Xem chi tiết
Xuandung Nguyen
Xem chi tiết
Mercury
Xem chi tiết
Đỗ Tấn Hoàng
Xem chi tiết