tìm x, y là số tự nhiên:
\(\frac{1}{x}+\frac{1}{y}=1\)
TÌm x ; y và z là các số tự nhiên khác 0 biết :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{5}\)
Tìm các số tự nhiên x, y sao cho : \(\frac{1}{x}+\frac{1}{y}\)là số nguyên
Tìm y là số tự nhiên :
\(\frac{1}{2}x\frac{1}{3}< y< \frac{1}{4}:\frac{1}{8}\)
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
tìm các số tự nhiên x,y (x<y) sao cho
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\)
ĐB\(\Leftrightarrow\frac{1}{x}=\frac{y-8}{8y}\)
\(\Leftrightarrow x\left(y-8\right)=8y\)
\(\Leftrightarrow\left(x-8\right)\left(y-8\right)=64\)
\(\Leftrightarrow x-8\inƯ\left(64\right)\)
Ta có bảng
x-8 | 1 | 2 | 4 | 8 | 16 | 32 | 64 |
y-8 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
x | 9 | 10 | 12 | 16 | 24 | 40 | 72 |
y | 72 | 40 | 24 | 16 | 12 | 10 | 9 |
Vậy (x;y) là (9;72),(10;40);(12;24);(16;16);(24;12);(40;10);(72;9)
Tìm số tự nhiên x, y, z biết: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{4}{5}\)
Tìm số tự nhiên x, y sao cho:
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\frac{1}{x+y}=\frac{x+y}{xy}\)
\(\Leftrightarrow\left(x+y\right)^2=xy\)
\(x^2+2xy+y^2=xy\)
\(x^2+xy+y^2=0\)
Phương trình này không có nghiệm vì \(\Delta=b^2-4ac=1^2-4=-3\Rightarrow\Delta< 0\)
tìm các số tự nhiên x,y (x<y) sao cho \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\)
Tìm x,y là số tự nhiên biết : \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)