chứng tỏ n+3 và 2n+5 ( n thuộc N ) là 2 số nguyên tố cùng nhau
chứng tỏ n+3 và 2n+5 ( n thuộc N ) là 2 số nguyên tố cùng nhau
Gọi d là ƯC(n+3;2n+5)
=> 2(n+3) - (2n+5) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ........
Gọi d là UCLN của n + 3 và 2n + 5
=> n + 3 chia hết cho d và 2n + 5 chia hết cho d
Vì n + 3 chia hết cho d nên 2(n+3) chia hết cho d => 2n + 6 chia hết cho d
Vì 2n + 6 chia hết cho d , 2n + 5 chia hết cho d
=> 2n + 6 - (2n+5) chia hết cho d
=> 1 chia hết cho d
Mà d lớn nhất nên d = 1
Vì UCLN của n + 3 và 2n + 5 bằng 1 nên n + 3 và 2n+ 5 là 2 số nguyên tố cùng nhau
Chứng tỏ rằng 3n + 5 và 2n + 3 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
Ai nhanh mk tick luôn
gọi UCLN(2n+3, 3n+5) là d
ta có 2n+5 chia hết cho d => 3(2n+3) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+5 chia hết cho d => 2(3n+5) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+3, 3n+5 ngtố cùng nhau(đpcm)
Chứng tỏ rằng hai số n + 1 và 3n + 4 (n ∈ N) là hai số nguyên tố cùng nhau.
Gọi d là ước chung của n + 1 và 3n + 4.
Ta có n + 1 ⋮ d nên 3( n+1) ⋮ d hay 3n + 3 ⋮ d
Lại có: 3n + 4 ⋮ d.
Suy ra (3n + 4) - (3n + 3) ⋮ d hay 1 ⋮ d
Do đó, d = 1.
Vậy n + 1 và 3n + 4 là hai số nguyên tố cùng nhau.
B1:Tìm a,b thuộc N biết: a+b=252 và ƯCLN(a,b)=42
B2: Tìm x thuộc N biết::12 chia hết cho x+3
B3:Chứng minh với mọi n thuộc N, các số sau là 2 số nguyên tố cùng nhau : 2n+1 và 6n+5
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
Chứng minh rằng : Với n ϵ N thì hai số sau là hai số nguyên tố cùng nhau
n+3 và 2n+5
Gọi \(d=ƯC\left(n+3;2n+5\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+3⋮d\\2n+5⋮d\end{matrix}\right.\) \(\Rightarrow2\left(n+3\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(n+3\) và \(2n+5\) nguyên tố cùng nhau với mọi số tự nhiên n
Gọi d = ƯCLN(n + 3, 2n + 50 với d ∈ N
Vậy và nguyên tố cùng nhau với mọi số tự nhiên n
chứng minh rằng n thuộc N
a) n và n + 1 là 2 số n tố cùng nhau
b) 21n + 4 và 14n + 3 là số n tố
Chứng tỏ n+ 1 và 3 n + 4 ( n thuộc N ) là hai số nguyên tố cùng nhau
Giúp mk với các thiên tài ơi
Gọi d là ước chung lớn nhất của n + 1 và 3n + 4
Ta có: \(n+1⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)
Mà \(3n+4⋮d\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\Rightarrow1⋮d\)
=> \(d\inƯ\left(1\right)\Rightarrow d=1\)
=> n + 1 và 3n + 4 nguyên tố cùng nhau (đpcm)
a,Chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau.
b, Chứng minh rằng với mọi số tự nhiên n thì n2+n+2016 không chia hết cho 5.
Chứng minh rằng n^3+2n và n^4+3n^2+n là 2 số nguyên tố cùng nhau.
Cho tam giác ABC cân tại A (AB=AC).Gọi D, E lần lượt là trung điểm của AB và AC.Gọi K là giao điểm của BE và CD.Chứng minh AK là tia phân giác của góc BAC.
Đề sai nhé, với mọi n khác 1 thì 2 số ko nguyên tố cùng nhau nha