Cho điểm A cố định nằm trong đường tròn tâm O, A khác O và dây BC quay quanh A. Xác định vị trí dây BC khi cung BC nhỏ nhất
Cho đường tròn ( O ; R ) và Bc là dây cung cố định ( BC khác 2R ). A là điểm chuyển động trên cung lớn BC . Xác định vị trí của điểm A để chu vi tam giác ABC lớn nhất .
Cho đường tròn tâm O đường kính AB . Dây CD vuông góc với AB tại điểm I cố định nằm giữa A và O . Lấy M bất kì trên cung nhỏ BC ( M không trùng với ,BC ), AM cắt CI tại điểm K . Tìm vị trí của M trên cung nhỏ BC để chu vi tứ giác ABMC lớn nhất.
Cho (O) và điểm A nằm ngoài đường tròn. Kẻ dây BC bất kì đi qua A
a, Xác định tâm D của đường tròn đi qua điểm A và tiếp xúc với (O) tại B.
Xác định tâm E của đường tròn đi qua điểm A và tiếp xúc với (O) tại C.
b, CMR DE luôn đi qua một điểm cố định khi dây BC quay quanh điểm A. Tìm tập hợp các điểm M là giao điểm thứ 2 của (D) và (E)
Lấy 1 điểm A cố định trên đường tròn (O;R). AB, AC là 2 dây cung quay quanh A sao cho tích AB.AC không đổi. Vẽ đường cao AH của tam giác ABC và đường kính AD của (O).
a) C/m AB.AC=AD.AH, suy ra đường thẳng BC luôn luôn tiếp xúc với một đường tròn cố định.
b) Trường hợp AH>R, tìm vị trí của dây cung BC sao cho SABC lớn nhất.
Cho đường tròn (O;R) và dây BC cố định (BC<2R) . A là điểm di chuyển trên cung lớn BC ( A khác B,C) .Gọi M là điểm chính giữa cung AC , H là hình chiếu vuông góc của M trên AB. Xác định vị trí của A trên cung lớn BC để đoạn CH có độ dài lớn nhất
Cho đường tròn tâm O bán kính R và 1 dây cung BC cố định. A là điểm di động trên cung lớn BC. Gọi I là trung điểm AC.
a/ Chứng minh: I di động trên 1 đường tròn cố định
b/ Qua I vẽ đường thẳnd vuông góc với AB. Chứng minh: d luôn đi qua 1 điểm cố định
c/ Xác định vị trí A để diện tích tam giác ABC lớn nhất
d/ Trong tâm G tam giác ABC di động trên 1 đường cố định
a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900
Vậy I thuộc đường tròn đường kính OC cố định (đpcm).
b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB
Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).
c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC
Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)
Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.
d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.
Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)
Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).
Chào chú Minh.
Cho đường tròn (O), đường kính AB. Dây CD quay quanh I cố định nằm trong (O) (I khác O) Vẽ AP vuông góc CD tại P, BS vuông góc CD tại S.
a) C/m P, S nằm ngoài (O)
b) So sánh PC với DS.
c) Xác định vị trí của dây cung CD để AP + BS đạt GTLN .
d) Xác định vị trí của dây cung CD để CD đạt GTNN.
Cho BC là dây cung cố định của đường tròn tâm O bán kính R (BC<2R). A là một điểm di chuyển trên cung BC. M là một điểm di chuyển trên day AC sao cho AC = 3AM. Vẽ MNvuông góc với AB 9 N thuộc AB). Xác định vị trí của A để độ dài CN lớn nhất.
Cho đường tròn tâm O và điểm A nằm bên trong đường tròn. Kẻ dây BC qua A. Gọi H là trung điểm dây BC. Hỏi khi BC quay quanh A thì H chạy trên đường nào